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Abstract 
In this paper, we introduced a new extension model of distribution. This model is the Power weighted Gompertz distribution (PWG), it is 

generated by the power transformation method. We obtained some statistical properties of the new model, including moments, moment 

generating function, some types of entropies, rsidual life and reversed residual life functions, and Bonferroni and Lorenz curves. Estimation of 

the parameters of extended distribution is obtained by the method of maximum likelihood. To check the usefulness of new model, we applied 

two real data set and used some goodness of fit statistics. We illustrated the versatility of proposed model to fit and model data and confirmed 

that this model provide a better fit than some other very well-known distributions.  

Keywords: Power transformation; Gompertz distribution; moments; entropies; Maximum likelihood estimation. 

 
1. Introduction 

The Gompertz distribution plays an important role in modeling reliability, survival times, human mortality and actuarial data that have hazard 

rate with exponential increase. Therefore, it has received considerable attention from demographers and description the distribution of adult life 

spans by actuaries (see Willemse and Koppelaar) [14]. Recently, Bakouch and Abd El-Bar [1] introduced a new version of the Gompertz 

distribution. This new distribution is known as weighted Gompertz (WGo) distribution which represents a mixture of classical Gompertz and 

second upper record value of Gompertz densities. The two parameters weighted Gompertz distribution has the cdf is given by 

 ( )    (  
 (     )

    
)    ( 

    )                                       (1)  

The corresponding pdf is defined as follows 
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    )                                             (2) 

In this paper, we present a new distribution having three parameter which is based on the WGo defined by Eq. (1), so-called power weighted 

Gompertz (PWG) distribution. Then we present various properties of the PWG distribution such as moments, moment generating function, three 

popular entropies, some measures of residual lifetime and reversed residual lifetime, estimation of the distribution parameters with the observed 

information matrix. Also, the applicability of the PWG distribution is shown by considering two real data sets, and related measures are obtained 

for both the data sets under the PWG distribution. 

1.1. The Proposed Model 

In this subsection, we defined the power weighted Gompertz model. A random variable   is said to have a power distribution if its cdf satisfies 

the following relationship 

 ( )   (  )                                                                (3) 

where  ( ) is the cdf of the baseline distribution. Now, we introduce the PWG model by taking  ( ) in Eq. (3) to be the cdf (1) of the WGo 

distribution. Therefore, the cdf of the PWG distribution is 
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The pdf of the PWG model is 
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                                      (5) 

As a result of (4) and (5), the hazard rate function of PWG can be defined as 

 ( )          
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1.2. Motivations of the Study  

The motivations of this study are to present PWG due to the following: 

 It is observed that the density function of the new model provides a wide range of shapes based on its additional shape parameter, for 

example a decreasing density of WGo will become monotonically decreasing, decreasing, symmetric, right-skewed and left-skewed 

(see Figure 1).  

 The PWG distribution have decreasing, increasing and bathtub shaped hazard function based on its additional parameter and can be 

used to provide a good fit for the real data than well-known distributions (see Figure 1).  

 The density of PWG can be obtained as a mixture of two positive ones, namely 

 (       )  
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where   (       ) and   (       ) are the density functions of power Gompertz  

and power 2nd upper record value of the Gompertz distribution defined as  
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respectively. 

 Additionally, the new model contains some distributions as special cases, these sub-models being discussed as: 

 Three-parameter power Lindley distribution (new). Under  having the PWG distribution and the transformation       
 
    

the distribution of   follows the three parameters power Lindley distribution with pdf 

 ( )  
   

    
    (    )    

 
  

 Power Lindley distribution (see Ghitany et al. [5]). 

In fact, the particular case of (5) for     and the transformation       
 
    is the power Lindley distribution with pdf 

              ( )  
   

   
    (    )    

 
  

 Two parameter Lindley distribution (see Shanker et al. [12]). 

Let  be a continuously distributed random variable with density (5). Then the random variable      
 
  has a two-parameter Lindley 

distribution with pdf  

 ( )  
  

    
(   )      

Further, in the above equation, when      we have the Lindley distribution. 
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Figure 1: Plots of the PWG density and hazard functions. 

(a)               (dashes-black),                 (green),                 (purple),  

              (red),             (blue). 

(b)               (blue),               (black),                 (green),               ( yellow),       

      (red),             (purple). 

The rest of this paper is organized as follows. In Section 2, we introduce some important statistical and reliability measures for PWG model, 

including the moments, moment generating function, three types of entropies, some measures of residual life and reversed residual life functions 

such as density, survival and hazard rate functions with mean and variance and Bonferroni and Lorenz curves. In Section 3, estimation of the 

parameters of PWG model and the observed information matrix are verified. In Section 4, two real data sets are used to assess the performance 

of PWG model among some classical and recent distributions based on some evaluation goodness-of-fit statistics. Finally, some concluding 

remarks are made in Section 5. 

2. Statistical and Reliability Properties 

In this section, we introduced some important statistical and reliability measures for PWG model, including the moments, moment generating 

function, three types of entropies, Residual life and reversed residual life functions and Bonferroni and Lorenz curves. 

2.1. Moments 

The    moment of the PWG model is given by 
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In particular, first and second moment for PWG are given, respectively by 
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and then 

   ( )       
 
                                                            (10)  

2.2. Moment generating function 

The moment generating function (m.g.f) of the PWG model is defined by 
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The mean and the variance of PWG model are presented in Table 1 for various values of    and    It is observed that, both of them decreases as 

the values of parameters increase. 

Table 1: Mean and variance for different values of α,σ and λ. 

parameters                          

α Mean Variance 

1 3.44253 0.910962 

1.5 2.25674 0.200146 

2 1.83341 0.081136 

2.5 1.62054 0.043116 

parameters                         

σ Mean Variance 

0.6 1.08693 0.101591 

0.9 0.935192 0.096780 

1.2 0.831625 0.0898217 

1.8 0.695632 0.076326 

parameters                          

λ Mean Variance 

1.2 1.40777 0.135793 

1.8 1.05455 0.085566 

2.2 0.912566 0.0680568 

2.8 0.765973 0.0515705 

 

2.3. Entropies 

Entropy is a measure of randomness of systems which is widely used in areas like physics, molecular imaging of tumors and sparse kernel 

density estimation. Three popular entropy measures are Shannon entropy , Rényi entropy and Mathai-Haubold entropy defined by: 
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respectively. 

2.3.1. Shannon entropy 

Shannon entropy for PWG is given as 
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where   is the Euler constant and it is equal 0.577216. 

The following integral 
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cannot be given explicit solution, so Shannon entropy solved numerically. 
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Some numerical values for Shannon entropy are displayed in Table 2. It can be observed that Shannon entropy decreases with increasing λ and α 

and it is increases with increasing σ and it can have negative values. 

Table 2: Shannon entropy for several arbitrary parameter values. 

Parameters σ = 0.1, α = 2 λ = 0.5, α = 2 λ = 0.5, σ = 0.1 

λ S. Entropy σ S. Entropy α S. Entropy 

1 -0.0399856 0.1 0.26914 1.8 0.466937 

1.5 -0.210973 0.2 0.360073 2 0.26914 

2 -0.327464 0.3 0.408451 2.8 -0.305027 

2.5 -0.415203 0.4 0.43715 3 -0.413635 

 

2.3.2. Rényi entropy 

The Rényi entropy for PWG is given by 
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Some numerical values for Rényi entropy are given in Table 3. It can be noted that Rényi entropy decreases with increasing λ and α and it 

increases with increasing σ. 

Table 3: Rényi entropy for several arbitrary parameter values. 

 
2.3.3. Mathai-Haubold entropy 

The Mathai-Haubold for PWG is given by 
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Some numerical values for the Mathai-Haubold entropy are summarized in Table 4. It is seen that Mathai-Haubold entropy decreases with 

increasing λ, α and σ. 

Table 4: Mathai-Haubold entropy for several arbitrary parameter values. 

Parameters σ = 0.1, α = 1.5, δ =1.5 λ = 0.5, α = 1.5, δ =1.5 λ = 0.5, σ = 0.1, δ =1.5 

λ M-H. Entropy σ M-H. Entropy α M-H. Entropy 

1 3.88548 0.1 8.75748 1.5 8.75748 

1.5 2.25847 0.2 7.20391 1.7 4.1509 

2 1.44356 0.3 6.24107 1.9 2.16765 

2.5 0.953877 0.4 5.54189 2.1 1.18196 

 

In the next subsections we will use the following lemma: 

Lemma 1: Let 
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Parameters σ = 0.1, α = 1.5, γ =2 λ = 0.5, α = 1.5, γ =2 λ = 0.5, σ = 0.1, γ =2 

λ R. Entropy σ R. Entropy α R. Entropy 

1 0.219417 0.1 0.652731 1 1.63878 

1.5 -0.0250912 0.2 0.704905 1.5 0.652731 

2 -0.193677 0.3 0.729438 2 0.0732073 

2.5 -0.321513 0.4 0.740581 2.5 -0.325513 
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2.4. Residual life and reversed residual life functions 

Residual life and reversed residual life random variables are used extensively in reliability analysis and the risk theory. Here, we investigate 

some of their related statistical functions, such as the survival function, mean and variance in connection with the PWG distribution.  

2.4.1. Residual lifetime function 

The residual life is the period from time t until the time of failure and it is defined by the conditional random variable  ( )              

    

The survival function of the residual lifetime  ( ) for the PWG distribution is: 
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The pdf and the hazard rate function of  ( ) are respectively, given as: 
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The mean of  ( ) for the PWG distribution is:  

  ( )  
 

 ( )
( ( )   (         ))                                                       (19) 

where E(x) can be obtained by using equation (8), S(t) can be obtained from equation (4) and  (         ) is computed by lemma 2.1 for r=1.  

The variance of  ( ) for the PWG distribution is: 

  ( )  
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                        (20)  

where  (  ) can be obtain by using equation (9), S(t) can be obtained from equation  

(4) and  (         ) is computed by lemma 2.1 for r=2.  

Some numerical values of the mean residual life are displayed in Table 5 for a set of arbitrary choices of the parameters λ, α and σ at the time 

points t = 2, 4, 6. This table shows that the mean residual life decreases with increasing the time points t, and decreases with increasing λ, α and 

σ. 

2.4.2. Reversed residual life function 

The reversed residual life is the time elapsed from the failure of a component given that its life satisfies    , and it is defined as the 

conditional random variable  ̅( )             

The survival function of the  ̅( ) for the PWG distribution is: 
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The pdf and the hazard rate function of  ̅( ) are: 
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The mean of  ̅( ) for the PWG distribution is given by: 

 ( )    
 (         )

 ( )
                                                            (24) 

where F(t) can be obtained from equation (4) and  (         ) is computed by lemma 1 for r=1.  

The variance of  ̅( ) for the PWG distribution is given by: 

 ( )     ( )  ( ( ))
 
    

 (         )

 ( )
                                         (25) 

where  (         ) is computed by lemma 1 for r=2.   

In Table 6 we give some numerical values for the mean reversed life with arbitrary choices of the parameters λ, α and σ at the time points t = 2, 

4, 6. It can be seen that the mean reversed residual life increases with increasing the time points t and increases with increasing σ and decreases 

with increasing λ and α. 

Table 5: Mean residual life function for several arbitrary parameter values. 

 

Table 6: Mean reversed residual life function for several arbitrary parameter values. 

λ= 0.5 , σ = 0.5 Parameters 

t = 6 t = 4 t = 2 Α 

6.87677 7.49908 8.19547 0.5 

1.71631 2.3491 3.23152 0.7 

0.429601 0.866969 1.69539 0.9 

0.0837276 0.310067 1.00168 1.1 

λ= 0.8 , α = 1.2 Parameters 

t = 6 t = 4 t = 2 Σ 

0.00756708 0.113509 0.959062 0.1 

0.00252301 0.0384394 0.422983 0.3 

0.00151387 0.0231087 0.26988 0.5 

0.00108135 0.0165173 0.197582 0.7 

α = 0.5 , σ = 0.1 Parameters 

t = 6 t = 4 t = 2 Λ 

8.38155 9.67559 11.1475 0.8 

5.89531 7.07045 8.46353 0.9 

4.19798 5.25014 6.5589 1 

3.01468 3.94346 5.1635 1.1 

λ= 0.5 , σ = 0.5 Parameters 

t = 6 t = 4 t = 2 Α 

5.18519 3.46199 1.73538 0.1 

3.99456 2.68994 1.36932 0.3 

3.20233 2.16213 1.12278 0.5 

2.80479 1.8055 0.94384 0.7 

λ= 0.8 , α = 1.2 Parameters 

t = 6 t = 4 t = 2 σ 

3.2157 1.22738 0.473489 0.1 

4.11939 2.11939 0.594419 0.3 

4.52047 2.52047 0.725105 0.5 

4.76694 2.76694 0.854786 0.7 

α = 0.5 , σ = 0.1 Parameters 

t = 6 t = 4 t = 2 λ 
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2.5. Bonferroni and Lorenz curves 

The Bonferroni and Lorenz curves have many applications in economics to study income and poverty, reliability, medicine and insurance. The 

list of applications in other areas: diseases risk to optimize health benefits under constrains, seasonal variation of environmental radon gas and 

statistical nonuniformity of sediment transport rate. 

The Bonferroni curve  [ ( )] for the PWG distribution is defined by: 

  [ ( )]   
 

 ( ) ( )
  (         )                                             (26)  

where E(x) can be obtained by using equation (8), F(x) can be obtained from equation  

(4), and  (         ) is computed by lemma 1 for r=1.  

Also, the Lorenz curve of F(.) that follows of the PWG distribution is the graph of 
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where  (         ) is computed by lemma 1 for r=1.  

3. Statistical inferences 

3.1. Maximum likelihood estimates 

In this sub-section, the method of maximum likelihood is studied to estimate the unknown parameters of the PWG model.  

Let             be a random sample of size  from the PWG distribution with parameters     and  . Then, the corresponding log-likelihood 

function is 
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Differentiating Eq. (28) with respect to     and    we obtain the following equations: 
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The maximum likelihood estimators (MLEs)  ̂  ̂ and  ̂ of     and    respectively, can be obtained by solving the above nonlinear equations 

numerically using the statistical software Mathematic package. 

3.2. Fisher's information matrix 

In order to determine the confidence intervals for the distribution parameters, we need to construct the information matrix. The corresponding 

    observed information matrix   (     ) is 

3.29594 2.2501 1.16637 0.1 

3.00025 2.08723 1.10898 0.3 

2.73544 1.93473 1.05302 0.5 

2.52209 1.79996 0.999689 0.7 
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3.3. Approximate confidence intervals 

Since the MLEs of     and   cannot be determined in closed forms, it is not easy to obtain the exact confidence intervals for     and    Hence, 

we can use the asymptotic behavior of the MLE to obtain the asymptotic confidence intervals for the model parameters. Using large sample 

approximation, the asymptotic distribution of the MLE is [√ ( ̂   ) √ ( ̂   ) √ ( ̂   )]    (   
  )  where    is the inverse of 

observed information matrix. The estimated variance covariance matrix of the parameters     and   can be obtained as follows 

    

(

 
 
 
 
 
   

   
 
   

    
 
   

    

 
   

    
 
   

   
 
   

    

 
   

    
 
   

    
 
   

   )

 
 
 
 

  

 (

         
         
         

+

  

 

 

     (

   ( ̂)    ( ̂  ̂)    ( ̂  ̂)

   ( ̂  ̂)    ( ̂)    ( ̂  ̂)

   ( ̂  ̂)    ( ̂  ̂)    ( ̂)

,  

Hence, the asymptotic    (   )  confidence intervals for     and   are given by  

{
  
 

  
  ̂   ̂    

 

√   ( ̂)  ̂   ̂    
 

√   ( ̂)

 ̂   ̂    
 

√   ( ̂)  ̂   ̂    
 

√   ( ̂)

 ̂   ̂    
 

√   ( ̂)  ̂   ̂    
 

√   ( ̂)

}
  
 

  
 

  



The Power Weighted Gompertz Model www.ijsei.in 

 

Int J Sci Eng Inv | January 2021                                                                                                                                                      10 

where   
 

 is the upper    (   )  percentile of the standard normal distribution. 

4. Data analysis 

By making use of two real data set, we illustrate the applicability of the PWG distribution among a set of classical and recent distributions, based 

on a set of goodness-of-fit statistics. We estimate the model parameters by using the maximum likelihood method. We compare goodness-of-fit 

of the models with the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Hannan-Quinn Information Criterion (HQIC) 

goodness -of-fit statistics. Further, we get the Kolmogorov-Smirnov (K-S) statistic with its corresponding p- value. In general, the model has the 

smaller values of these statistics and the largest value of the p-value is the best model to fit the data. 

4.1. Strength of 1.5 cm glass fibers data  

The data set is given in Table 7. This data set consists of 63 observations of the strength of 1.5 cm glass fibers measures at the UK National 

Physical Laboratory. These data have been analyzed by Smith and Naylor [13]. Table 8 gives some descriptive statistics for the data set and 

using it we note that the data are under-dispersed (variance mean) and positively skewed. Further, the data set having positive kurtosis, that is 

the tail of their histograms increases quickly, and hence its histogram tail increases slowly. Description of such data go with the features of the 

PWG distribution and this proves the suitability of this distribution for analyzing such data. This suitability is confirmed again by noting the 

closeness of those descriptive statistics with their theoretical measures given by Table 9 of the PWG distribution for the strength 1.5 glass fibers 

data. On the other side, comparing the PWG distribution with other classical and recent distributions is done as follows. 

The pdfs of the compared models are given by: 

 The 3- parameter Gompertz (3-PG) distribution ( Haile et al. [7]) with density function 
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(       )-           ,  both real and finite. 

 The generalized Gompertz (GG) distribution (El-Gohary et al. [4]) with density function 
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 The transmuted Gompertz (TG) distribution (Khan et al. [9]) with density function  

  ( )         , 
 

 
(     )- *         , 

 

 
(     )-+                    

 The power Lomax (PLo) distribution (Rady et al. [11]) with density function 

         ( )          (    )
    

              

 The beta – Gompertz (BG) distribution (Jafari et. al. [8]) with density function   

    ( )  
 

 (   )
       , 

  

 
(     )- *     , 

 

 
(     )-+

   
  

                   

For the data set, we estimate the unknown parameters of each distribution by the maximum-likelihood method, and using those estimates, we 

obtain the statistics K-S, p-value, AIC, BIC and HQIC. The obtained results are reported in Tables 10 and 11. From these tables, the smallest 

values of the K-S, AIC, BIC and HQIC and the largest value of p-value are obtained for the PWG distribution. Hence, we conclude that the 

PWG distribution provides the best fit among the compared distributions. This result is asserted graphically by Figure 2, where the estimated 

densities and estimated survival functions for the compared distributions of the data set are plotted based on the density and survival functions of 

each distribution and replacing the parameters with their MLEs given in Table 10. To show that the likelihood equations have a unique solution 

for the parameters of the PWG distribution, we plot the profiles of the log-likelihood functions of     and   for the strength of 1.5 cm glass 

fibers data in Figures 3. Those figures confirm this fact. 

 

 

Table 7: Strength of 1.5 cm glass fibers data. 

 

Table 8: Descriptive statistics of the data set. 

Mean Median SD SK KS MD-mean MD-median SE 

0.55   0.74   0.77   0.81    0.84    0.93    1.04    1.11    1.13    1.24   1.25      1.27   1.28    1.29    1.30    1.36    1.39    1.42    1.48    1.48    1.49   

1.50       1.50   1.51    1.52    1.53    1.54    1.55    1.55    1.58    1.59    1.60   1.61    1.61   1.61    1.61    1.62    1.62    1.63    1.64    1.66    

1.66    1.66   1.67     1.68   1.68    1.69    2.00    2.01    2.24 



The Power Weighted Gompertz Model www.ijsei.in 

 

Int J Sci Eng Inv | January 2021                                                                                                                                                      11 

1.4408 1.525 0.33012 0.622915 0.64624 0.24857 0.2328 1.56197 

MD:= Mean deviation, KS:= kurtosis, SK:= skewness, SE:= Shannon entropy 

Table 9: Some measures of the PWG distribution for the strength of 1.5 cm glass fibers data. 

Mean Median SD MD-mean MD-median SE RE 

1.4437 1.46427 0.3158 0.47374 0.4437 0.25486 0.09678 

SE:= Shannon entropy, RE:= Rényi entropy 

Table 10: The MLEs of the parameters of some models fitted to the strength of 1.5 cm glass fibers data. 

Distributions 
 

 
 

Estimates 
    

    (     ) 0.007368 
 

0.548185 
 

2.1219 
 

- 

  (     ) 0.11975 
 

2.28075 
 

0.11975 
 

- 

  (     ) 0.006674 
 

3.63212 
 

0.805819 
 

- 

   (     ) 11.7034  5.5327  130.762  - 

  (       ) 2.31688  1.12869  0.11473  2.17726 

   (     ) 398.0.4  89880040  1109113  - 

 

Table 11: The values of K-S, p- value, AIC, BIC and HQIC statistics for some models fitted to the strength of 1.5 cm glass fibers data. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Estimated densities and survival functions for the considered distributions for the strength of 1.5 cm glass of fibers. 

Consequently, the variance-covariance matrix of the MLEs of the PWG distribution for the strength of 1.5 cm glass fibers data is:  

(
                                   
                                
                                   

+  

We note that the diagonal entries of above matrix are the variances of the MLEs of the PWG parameters    and  of the data set while the values 

-0.002255, 96.0427, and -6.06473 represent the covariance between the MLEs of ( and  ) ( and  )  and ( and  )  for the data set, 

respectively. 

     

Distribution  
K-S value 

 
p-value 

 
AIC 

 
BIC 

 
HQIC 

      (     ) 
 

8901331 
 

8980810 
 

309..14 
 

309..83 
 

309130. 

  (     ) 
 

0.16919 
 

0.114216 
 

33.368 
 

39.1048 
 

35.553 

  (     ) 
 

0.17040 
 

0.10959 
 

33.516 
 

39.2522 
 

35.7005 

         (     )  0.17142  0.10587  33.686  39.4223  35.8706 

       (       )  0.16890  0.11537  35.363  43.0117  38.276 

      (     )  0.16266  0.14182  32.9907  38.7268  35.185 
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Figure 3: The profile of the log-likelihood as a function of     and λ for the PWG model fitted to the strength of 1.5 cm glass fibers data. 

4.2. Growth hormone data 

The data set is given in Table 12. This data set consists of 40 observations of the Growth hormone data set. Children of the Program Hormonal 

(de Crescimento da Secretaria da Sa´ude de Minas Gerais) were diagnosed with growth hormone deficiency. The data consists of the estimated 

time since the growth hormone medication until the children reached the target height. The data set have been analyzed by De Morais [3]. Table 

13 shows some descriptive statistics for Growth hormone data and it is noted that the data set have positive kurtosis and skewness. In Table 14 

there are some of the corresponding theoretical measures of the PWG distribution of the data set. From Tables 13 and 14 it can be concluded that 

the considered measures of the PWG distribution are close to the sample measures given by Table 13 for the data set. 

Comparing the PWG distribution with other classical and recent distributions is done as follows: 

The pdfs of the compared models are given by: 

 The Gompertz (G) distribution (Gompertz [6]) with density function 

        ( )         ( 
    )                  

 The Shifted Gompertz (SG) distribution (Bemmaor [2]) with density function  

        ( )     (     
   ) (   (      ))               

 The Gompertz Lomax (GL) distribution (Pelumi et al. [10]) with density function 

        ( )     (    )       [
 

 
(  (    )  )]                  

For the data set, we estimate the unknown parameters of each distribution by the maximum-likelihood method, and by using those estimates, we 

obtain the statistics K-S, p-value, AIC, BIC and HQIC. From Tables 15 and 16, the smallest values of the K-S, AIC, BIC and HQIC and the 

largest value of p-value are obtained for the PWG distribution. So, we conclude that the PWG distribution provides the best fit among the 

compared distributions. Figure 6 confirm this result where the estimated densities and estimated survival functions for the compared 

distributions of the data set are plotted based on the density and survival functions of each distribution and replacing the parameters with their 

MLEs given in Table 15. We plot the profiles of the log-likelihood functions of α, σ and λ for the growth hormone data in Figure 7, this figure 

confirm that the likelihood equations have a unique solution for the parameters of the PWG distribution. 

Table 12: Growth hormone data. 

2.15   2.20   2.55    2.56   2.63   2.74   2.81   2.90   3.05   3.41  3.43   3.43   3.84   4.16   4.18   4.36   4.42   4.51   4.60   4.61   4.75  5.03    5.10  

5.44   5.90   5.96   6.77   7.82   8.00   8.16   8.21   8.72  10.40 13.20  13.70 
 

Table 13: Descriptive statistics of the data set. 

Mean Median SD SK KS MD-mean MD-median SE 

        4.51 2.91125 1.3509 1.27507 2.20637 2.04429 1.52687 

MD:= Mean deviation, KS:= kurtosis, SK:= skewness, SE:= Shannon entropy 

Table 14: Some measures of the PWG distribution for the growth hormone data. 

SE:= Shannon entropy, RE:= Rényi entropy 

Table 15: The MLEs of the parameters of some models fitted to the growth hormone data. 

Table 16: The values of K-S, p- value, AIC, BIC and HQIC statistics for some models fitted to the growth hormone data. 

 

Mean Median SD MD-mean MD-median SE RE  

5.27519 4.9406 2.91226 0.543195 4.27519 2.43026 2.31079  
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Figure 6: Estimated densities functions for the considered distributions for the growth hormone data. 

     

Figure 7: The profile of the log-likelihood as a function of α ,σ and λ for the PWG model fitted to the growth hormone data. 

5. Concluding remarks 

We propose a new- three parameter distribution referred to as the power weighted Gompertz (PWG) distribution, which is based on the weighted 

Gompertz distribution. Various properties of the PWG have been derived, including the moments, moment generating function, three popular 

entropies, some measures of residual lifetime and reversed residual lifetime and Bonferroni and Lorenz curves. The model parameters are 

estimated by the method of maximum likelihood and the observed information matrix is derived. Finally, an application of the PWG distribution 

to two real data sets is provided to illustrate that this distribution provides a better fit than some other very well-known distributions. 
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