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Abstract 
In this communication, A numerical solution strategy has been devised to compute entropy in a thermo-fluidic system comprising micropolar 

fluid in a Darcian regime bounded by a vertically moving plate experiencing time-dependent suction. The Crank- Nicolson numerical scheme 

exploited to solve the governing equations results in a tri-diagonal block matrix system. The resultant system is then solved by the Thomas 

algorithm, which provides pertinent quantities of interest. The velocity and thermal fields are used to compute entropy generation. The profiles 

for entropy generation and Bejan number are portrayed and discussed. 
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Introduction 

Entropy aspects in thermo-fluidic systems are pertinent for energy 

optimization in engineering systems. It is physically realized that 

real fluidic systems confront thermodynamic irreversibility, which 

causes energy losses due to heat transfer, dissipation, magnetic field, 

radiation, walls of a porous medium, etc. Bejan [1,2] showed that 

irreversibility analysis of fluidic systems facilitates parametric study 

that allows the identification of parameters impacting entropy 

generation. We can select parameters wisely that help reduce entropy 

without compromising the design. Realizing the importance of 

entropy analysis in thermo fluidic systems and interesting 

applications, numerous authors have focused on fluidic systems for 

second law analysis aspects. These studies varied in terms of choice 

of fluids, geometries and allied features. Rashidi et al. [3] investigated 

entropy generation in steady MHD flow due to a rotating porous disk 

in a nanofluid. Maougal and Bessaïh [4] studied heat transfer and 

entropy analysis for mixed convection in a discretely heated porous 

square cavity. Vyas and Srivastava [5] performed entropy analysis for 

a flow inside a composite duct with asymmetric convective cooling. 

Matin [6] analysed entropy generation in combined heat and mass 

transfer over a plate embedded in a porous medium. Vyas and Khan 
[7] considered MHD dissipative Casson fluid flow for Entropy 

analysis. Srivastava et al. [8] trapped entropy in a vertical channel, 

facilitating oscillatory flow. Vyas and Soni [9] analysed entropy in a 

unique boundary layer flow due to a point sink at the cone’s vertex. 

Kumari and Raju [10] investigated time-dependent MHD free 

convective flow past a vertical porous plate with fluctuating heat and 

mass transfer effects. Vyas et al. [11] conducted a numerical analysis 

of entropy encountered in Micropolar fluid flow under boundary 

layer assumptions. Vyas and Yadav [12] analysed entropy for a 

convective regime over a vertical stretching cylinder. Monaledi and 

Makinde [13] simulated entropy for microchannel nanofluid flow. 

Eegunjobi and Makinde [14] examined entropy in nano-liquid film 

over an inclined heated surface. Vyas and Khan [15] investigated 

entropy in micropolar couple stress fluid flow in the Forchheimer 

channel. 

The Micropolar fluid has microstructures characterized by 

additional internal degrees of freedom. Due to its unique properties, 

it has found numerous applications in various industrial processes 

such as lubrication, coating, and heat transfer. The studies of 

micropolar fluids have wide applications in various technological 

processes in chemical, pharmaceutical, and food industries. These 

include the polymer industry, liquid crystals, lubricant formulation, 

colloidal suspensions, etc. As far as the mathematical description of 

such fluids is concerned, it is noticed that the classical Navier-Stokes 

theory needs refinement. Constitutive equations for Newtonian 

fluids should be extended to address more complex fluids with 

microstructures exhibiting micro-rotational effects and supporting 

surface and body couples. Eringen [16,17] developed the theory of 

micro fluids, including the effect of local rotary inertia, the couple 

stress and inertial spin. The crux of the theory is that rigid randomly 

oriented particles contained in a small fluid volume element 

undertake rotation about the centre of the volume elements described 

by a microrotation vector. 

The flow past a surface is worth studying due to wide theoretical and 

technological points of view and consequently received attention. 

Soundalgekar and Takhar [18] discussed micropolar fluidics past a 

continuously moving plate. Gorla et al. [19] examined natural 

convective micropolar fluid flow over a uniformly heated vertical 

plate. Kim [20] developed a perturbation solution transient convection 

of micropolar fluid past a vertical porous plate bounding a porous 

medium. Srinivasacharya et al. [21] studied the unsteady Stokes flow 

of micropolar fluid between two parallel porous plates. Kim and 

Fedorov [22] examined a micropolar fluid’s time-dependent mixed 

radiative convection flow past a moving semi-infinite vertical 
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porous plate. Kim [23] examined mass transfer in MHD micropolar 

flow over a vertically moving porous plate in a porous medium. 

Chaudhary and Jain [24] developed a perturbation scheme for 

investigating magneto-micropolar fluid flow for heat and mass 

transfer due to a radiate surface. Abdulaziz and Hashim [25] studied 

fully developed free convection mass transfer of a micropolar fluid 

between porous vertical plates. Das [26] studied the effect of chemical 

reactions and thermal radiation on MHD micropolar fluid’s heat and 

mass transfer flow in a rotating frame of reference. Sharma and Jha 
[27] studied heat transfer in MHD micropolar fluid flow past a vertical 

plate in a slip-flow regime. Pal and Talukdar [28] used the 

perturbation technique to study unsteady MHD mixed convection 

periodic flow, heat and mass transfer in micropolar fluid with 

chemical reaction in the presence of thermal radiation. Ashraf et al. 
[29] studied MHD non-Newtonian micropolar fluid flow and heat 

transfer in a channel with stretching walls. Narayana et al. [20] 

investigated the effects of Hall current and radiation absorption on 

MHD micropolar fluid in a rotating system. Gangadhar et al. [31] 

investigated the effects of Newtonian heating on micropolar 

ferrofluid flow past a stretching surface. Magodora et al. [32] 

investigated dual solutions of a micropolar nanofluid flow with 

radiative heat mass transfer over a stretching/shrinking sheet using 

the spectral quasi-linearization method. Ahmad et al. [33] investigated 

the Cattaneo–Christov heat flux model for stagnation point flow of 

micropolar nanofluid toward a nonlinear stretching surface with slip 

effects. 

However, the studies reported above, references contained 

therein and other works have given scanty attention to 

thermodynamic irreversibility aspects. In this study, we aim to 

demonstrate the application of a powerful numerical scheme for the 

setup undertaken herein with central stimuli to trap the features of 

inherent thermodynamic irreversibility. The study, it is expected, 

would serve as a tool for further applications. It is not out of place to 

record that the Crank-Nicolson method is a powerful numerical 

technique used to solve differential equations that arise in various 

fields of science and engineering. Its accuracy, stability, efficiency, 

or a combination of these factors make it a robust numerical solution 

tool. The findings tabled and portrayed graphically will be discussed 

at length. 

Mathematical model 

We consider a steady laminar incompressible micropolar fluid past 

a flat infinite plate moving vertically upwards embedded in a fluid-

saturated porous medium. A plate bearing a uniform temperature is 

subjected to a time-dependent suction. We choose a Cartesian 

coordinate system where X 

,
Y 

-axes are chosen along the plate 

and normal to the plate, respectively. 

 

 

The governing equations read as follows.  
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Boundary conditions are  
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Where ,u v 
are velocity components in 

*X , 
*Y  direction respectively,   is the fluid density,   is the kinematic viscosity, r  is the 

kinematic rotational viscosity,   is the coefficient of volumetric thermal expansion of fluid, K 
is the permeability of the porous medium, j  

is the microinertia density, 
 is the component of angular velocity,   is the spin gradient viscosity, 𝜅 is thermal conductivity, T  is temperature, 

pc  is specific heat at constant pressure, 0Q  is heat sink , pu
 velocity of porous plate, U 


 is the free stream velocity which follow an 

exponentially small perturbation law in which   and  
 are small less than unity and 0U  is a scale of free stream velocity, wT  the temperature 

at the wall, T  shows free stream temperature, the boundary condition for microrotation describes it’s with the surface stress. In this equation, 

the parameter N  is a number between 0 and 1 that relates the micro relationship gyration vector to the shear stress. Value 0N =  represents the 

case when the particle density is sufficiently large, leading to the microelement close to the wall being unable to rotate. Value 0.5 indicates weak 

concentrations, and at 1,N =  flows are believed to represent turbulent boundary layers (Rees and Bassom [34]). 

Outside the boundary layer, the equation (2) gives a pressure gradient in the form.  
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Now, we introduce non-dimensional quantities as follows.  
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and spin gradient viscosity γ, which gives some relationship between the coefficient of viscosity and microinertia, is defined as 
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Using the above non-dimensional quantities, the governing equations defined by equations (1) - (4) are converted into the following non-

dimensional form. 

The equation of continuity (1) gives 

0v V= −  

Equations (2) to (4) gives us  
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and boundary conditions given by equation (5)into non-dimensional form is 
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Entropy generation 

The local volumetric rate of entropy generation GS  is given as follows. 
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The first term in the equation (13) is the irreversibility due to heat transfer, and the second term is the entropy generation due to viscous dissipation. 

In non-dimensional form, the entropy generation sN  is obtained as follows. 
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Skin friction, couple stress and Nusselt number 

We calculate physical quantities of interest, i.e., skin friction coefficient 
fC , couple stress coefficient mC , and Nusselt number Nu , which are 

expressed as follows 
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Using equations (7) and (16) the expression in equation (15) provides Skin friction coefficient, Couple stress coefficient and Nusselt number as. 
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Numerical technique 

The unsteady, nonlinear, coupled partial differential equations (9)-(11) with boundary conditions (12) are solved by employing an implicit finite 

difference scheme of crank-Nicolson type. 

The finite difference equations for the setup are as follows. 
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and the boundary conditions given in equation (12) are discretized as follows  
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Here, subscript j  denotes the grid point with y -coordinate j y  

The above equations can be rewritten as follows 
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We notice that the finite difference equations (18)-(20) for each time step have a block tri-diagonal matrix that is amenable to Thomas algorithm 

treatment. 

In vector-matrix notation, equations (22)-(24) can be written as  
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  

, 

1 0 0

0 1 0
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JD

 
 

=
 
  

, 1 0 0
T

t

JC e = +  , 1, 2, 3, ,2 1j j j jC R R R j J =   −   

The computations carried through the above scheme provide quantities of interest, viz. Values of skin friction coefficient 
fC , couple stress 

coefficient mC , Nusselt number Nu , velocity and temperature profiles. These quantities are instrumental in computing thermodynamic 

irreversibility. 

Table 1: Values of Skin Friction Coefficient 
fC , couple Stress coefficient mC , and Nusselt number Nu  for various values of Da ,  , 

Gr , vm , 
pU , and N  with 0.3t = , 1Pr = , 1S = − , 0.01 = , 1 = , and 5Br = at wall 0y =  

Da    Gr  
vm  pU  N  

fC  
mC  Nu  

0.1 0.5 2 0.5 0.5 0.5 4.894375 8.040208 1.813906 

0.2 3.523349 8.040137 

0.3 2.664230 7.914999 

0.5 1.682003 7.697730 

1 0 2 0.5 0.5 0.5 0.645275 5.783535 1.813906 

1 0.741437 9.012886 

5 1.062313 20.48592 

10 1.313380 32.93657 

1 0.5 1 0.5 0.5 0.5 0.119091 7.229373 1.813906 

3 1.265227 7.616370 
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5 2.411363 8.003367 

7 3.557498 8.390364 

1 0.5 2 0.3 0.5 0.5 0.683140 7.749395 1.813906 

0.5 0.692159 7.422872 

0.7 0.698834 6.951494 

0.9 0.704068 6.512866 

1 0.5 2 0.5 0.1 0.5 2.377509 2.235170 1.813906 

0.5 0.692159 7.422872 

2 -5.62790 26.87675 

3 -9.84127 39.84600 

1 0.5 2 0.5 0.5 0.1 0.747741 1.541506 1.813906 

0.4 0.706051 5.996713 

0.7 0.664158 10.18435 

1 0.620659 14.10310 

Table 2: Values of Skin Friction Coefficient 
fC , couple Stress coefficient mC , and Nusselt number Nu  for various values of Pr , S  

with 0.3t = , 1Da = , 0.5 = , 2Gr = , 0.5vm = , 0.5pU = , 0.5N = , 0.01 = , 1 = , 5Br = at wall 0y =  

Pr   S  fC  
mC  Nu  

1 

-1 

0.692159 7.422872 1.813906 

3 0.220738 7.254799 4.069821 

5 0.039607 7.191697 6.032739 

7 -0.062975 7.156649 7.902097 

1 

-1 0.692159 7.422872 1.813906 

-5 0.511831 7.342274 2.724067 

-10 0.367424 7.283858 3.570906 

-15 0.271525 7.248312 4.241679 

 

Result and discussion  

To peep into the phenomenon of thermodynamic irreversibility 

confronted by the system, the plots for entropy number Ns  and 

Bejan number have been depicted in 2-D and 3-D setups. Besides 

these, the plots for velocity, temperature and microrotation have 

been appended in the appendix to have a ready glance, as these also 

impact entropy generation. We recall the entropy number is 

composed of two parts, viz., the heat transfer part and the dissipative 

part, which involve parameters having a bearing on the system. 

Consequently, a parametric study of thermodynamic irreversibility 

is possible. The Bejan number is another parameter that identifies 

relative contribution. Besides the plots, we showcase pertinent 

quantities, viz. skin friction coefficient 
fC , couple stress 

coefficient mC  and Nusselt number Nu  in Tables 1
 
and 2. 

From the table-1, we notice that with the increasing value of 

Darcy number Da  from 0.1 to 0.5, the coefficient of skin friction 

is decreased from 4.894375 to 1.682003, and couple stress gets 

decreased from 8.040208 to 7.697730, and Nusselt number remains 

unchanged while the other parameters are kept fixed as 0.5 = , 

2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU = , 

0.5N = , 0.01 = , 1 = ,  and 5Br = . With the 

increasing value of viscosity ratio   from 0 to 10 the coefficient of 

skin friction got increased from 0.645275 to 1.313380 and 

coefficient of couple stress increased from 5.783535 to 32.936571 

while the parameters are kept fixed as 1Da = , 2Gr = , 

0.5vm = , 1Pr = , 1S = − , 0.5pU = , 0.5N = , 

0.01 = , 1 = , and 5Br = . With the increasing value of 

Grashoff number Gr  from 1 to 7 the coefficient of skin friction 

increased from 0.119091 to 3.557498 and coefficient of couple stress 

increased from 7.229373 to 8.390364 when parameters are kept 

fixed as 1Da = , 0.5 = , 0.5vm = , 1Pr = , 1S = − , 

0.5pU = , 0.5N = , 0.01 = , 1 = ,  and 5Br = . 

With the increasing value of vm (parameter related to 

microrotation) from 0.3 to 0.9, the coefficient of skin friction 

increased from 0.683140 to 0.704068, and the coefficient of couple 

stress decreased from 7.749395 to 6.512866 when parameters were 

kept fixed as 1Da = , 0.5 = , 2Gr = , 1Pr = , 1S = −

, 0.5pU = , 0.5N = , 0.01 = , 1 = ,  and 5Br = . 

With the increasing value of the velocity 
pU at the wall 0y =

from 0.1 to 3, the coefficient of skin friction decreased from 

2.377509 to -9.841279, and the coefficient of couple stress jumped 

from 2.235170 to 39.846007 when parameters are kept fixed as 

1Da = , 0.5 = , 2Gr = , 0.5vm = , 1Pr = , 1S = − , 

0.5N = , 0.01 = , 1 = , and 5Br = . With the 

increasing value of N  (parameter relates micro gyration to the 

shear stress) from 0.1 to 1, the coefficient of skin friction decreased 

from 0.747741709048447 to 0.620659017053793, and the 

coefficient of couple stress increased from 1.541506 to 14.103106. 

In contrast, the parameters are kept fixed as 1Da = , 0.5 = , 

2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU = , 

0.01 = , 1 = ,  and 5Br = . 
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Table 2 data shows that with increasing value of Prandtl 

number Pr from 1 to 7, the coefficient of skin friction decreased 

from 0.692159 to -0.062971, the coefficient of couple stress 

decreased from 7.422872 to 7.156649, and the Nusselt number 

increased from 1.813906 to7.90209751920219. At the same time, 

parameters are kept fixed as 1Da = , 0.5 = , 2Gr = , 

0.5vm = , 1S = − , 0.5pU = , 0.5N = , 0.01 = , 

1 = , and 5Br = . When the sink parameter S  is changed 

from -1 to -15 then the coefficient of skin friction decreased from 

0.692159 to 0.271525, coefficient of couple stress decreased from 

7.422872 to 7.248312, and Nusselt Number registered a jump from 

1.813906 to 4.241679 while parameters are kept fixed as 1Da = ,

0.5 = , 2Gr = , 0.5vm = , 1Pr = , 0.5pU = , 

0.5N = , 0.01 = , 1 = , and 5Br =  

To peep into the phenomenon of thermodynamic 

irreversibility confronted by the system, the plots for entropy 

number Ns  and Bejan number Be  have been depicted in 2-D and 

3-D setups. Besides these, the plots for velocity, temperature and 

microrotation have been appended in the appendix to have a ready 

glance, as these also impact entropy generation. We recall the 

entropy number is composed of two parts viz. The heat transfer part 

and the dissipative part involve parameters having a bearing on the 

system. Consequently, a parametric study of thermodynamic 

irreversibility is possible. Besides the plots, we showcase pertinent 

quantities. From these figures, we notice the dependence of entropy 

on embedded parameters, indicating that entropy can be managed 

qualitatively and quantitatively by proper selection of parameters 

paving the way for entropy generation minimization. 

The present study aimed solely to fill the void of solution 

strategy for such setups hitherto attempted by perturbation methods. 

Our endeavour offers an outreach to robust numerical treatment. 

 

 

Figure 2: Entropy with varying   when 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU = , 0.5N = , 0.01 = , 

1 = ,  and 5Br = . 

 

 

 

Figure 3: Entropy generation profile for varying Br  when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU =

, 0.5N = , 0.01 = , and 1 = . 
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Figure 4: Entropy generation profile for varying Da  when 0.5 = , 2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU = , 0.5N =

, 0.01 = , 1 = ,  and 5Br = . 

 

 

 

Figure 5: Entropy generation profile for varying Gr  when 0.5 = , 1,  Da =  0.5vm = , 1Pr = , 1S = − , 0.5pU = , 

0.5N = , 0.01 = , 1 = ,  and 5Br = . 
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Figure 6: Entropy generation profile for varying vm  when 0.5 = , 1,  Da =  2Gr = , 1Pr = , 1S = − , 0.5pU = , 0.5N =

, 0.01 = , 1 = , and 5Br = . 

 

 

 

Figure 7: Entropy generation profile for varying N  when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU =

, 0.01 = , 1 = , and 5Br = . 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijsei.in/


International Journal of Science and Engineering Invention (IJSEI) 

 

www.ijsei.in 54 

 

 

Figure 8: Entropy generation profile for varying Ω  when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU =

, 0.5N = , 0.01 = ,  and 5Br = . 

 

 

 

Figure 9: Entropy generation profile for varying Pr  when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1S = − , 0.5pU = , 

0.5N = , 0.01 = , 1 = ,  and 5Br = . 
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Figure 10: Entropy generation profile for varying S  when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 0.5pU = , 0.5N =

, 0.01 = , 1 = ,  and 5Br = . 

 

 

 

Figure 11: Bejan number profile for varying   when 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU = , 0.5N = , 

0.01 = , 1 = ,  and 5Br = . 
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Figure 12: Bejan number profile for varying Br  when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU = , 

0.5N = , 0.01 =  and, 1 = . 

 

 

 

Figure 13: Bejan number profile for varying Da .  when 0.5 = , 2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU = , 0.5N = , 

0.01 = , 1 = ,  and 5Br = . 

 

 

 

 

 

 

 

 

 

 

http://www.ijsei.in/


International Journal of Science and Engineering Invention (IJSEI) 

 

www.ijsei.in 57 

 

 

Figure 14: Bejan number profile for varying Gr  when 0.5 = , 1,  Da =  0.5vm = , 1Pr = , 1S = − , 0.5pU = , 0.5N = , 

0.01 = , 1 = ,  and 5Br = . 

 

 

 

Figure 15: Bejan number profile for varying vm  when 0.5 = , 1,  Da =  2Gr = , 1Pr = , 1S = − , 0.5pU = , 0.5N = , 

0.01 = , 1 = ,  and 5Br = . 
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Figure 16: Bejan number profile for varying N  when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU = , 

0.01 = , 1 = , and 5Br = . 

 

 

 

Figure 17: Bejan number profile for varying Ω .  when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 1S = − , 0.5pU = , 

0.5N = , 0.01 = , and 5Br = . 
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Figure 18: Bejan number profile for varying Pr  when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1S = − , 0.5pU = , 0.5N = , 

0.01 = , 1 = ,  and 5Br = . 

 

 

 

Figure 19: Bejan number profile for varying S when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 0.5pU = , 0.5N = , 

0.01 = , 1 = ,  and 5Br = . 
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Figure 20: Three Dimensional velocity profile when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 0.5pU = , 0.5N = , 

0.01 = , 1 = ,  and 5Br =  

 
 

 

Figure 21: Three Dimensional microrotation profile when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 0.5pU = , 0.5N =

, 0.01 = , 1 = ,  and 5Br =  
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Figure 22: Three Dimensional temperature profile when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 0.5pU = , 0.5N = , 

0.01 = , 1 = ,  and 5Br =  

 
 

 

Figure 22: Three Dimensional Entropy generation profile when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 0.5pU = , 

0.5N = , 0.01 = , 1 = ,  and 5Br =  
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Figure 23: Three Dimensional Bejan Number profile when 0.5 = , 1,  Da =  2Gr = , 0.5vm = , 1Pr = , 0.5pU = , 0.5N =

, 0.01 = , 1 = ,  and 5Br =  
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