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Abstract 

Objective: To design, model, verify, and synthesize a low-power Neural Processing Element tailored for Edge AI applications, focusing on efficient 

execution of neural network operations within resource-constrained environments. 

Design: A modular hardware architecture based on an adaptation of the ARM Ethos-U microNPU, incorporating blocks for multiply-accumulate 

operations, weight decoding, data buffering, and output formatting. 

Subjects/Patients: Not Applicable 

Methods: The design was implemented in Verilog HDL, verified using Cadence Xcelium for functional correctness, and synthesized with Cadence 

Genus to evaluate area, power, and timing metrics. A finite state machine controls data flow, and four key blocks (MAC Unit, Weight Decoder, 

Shared Buffer, and Output Unit) were simulated and partially integrated. 

Results: Simulations confirmed correct functionality of implemented blocks, with accurate multiply- accumulate operations, weight decoding, data 

storage/retrieval, and output formatting. The architecture demonstrates scalability for parallel instantiation, reduced memory accesses, and 

suitability for low-power edge devices. 

Conclusion: The proposed Neural Processing Element provides a scalable, efficient hardware solution for Edge AI, enabling low-latency inference 

on IoT devices while minimizing power consumption. 

Keywords: Artificial Neural Networks, Edge AI, Low-Power Design, Multiply-Accumulate, Neural Processing Element, Verilog HDL, Weight 

Decoding 

 

1. Introduction 

Artificial Intelligence (AI) is no longer a futuristic concept but a 

mainstream technology driving innovation across nearly every 

sector. From wearable health monitors that track and analyze bio 

signals in real-time, to smart surveillance cameras capable of 

detecting suspicious activities, to autonomous drones used for 

disaster management and delivery services, AI has become a 

cornerstone of modern digital systems. According to market reports, 

the global AI market is projected to exceed USD 1.8 trillion by 2030 
[4], with a significant portion of this growth driven by edge-based 

deployments. This trend reflects the increasing demand for AI that 

is not only powerful but also accessible, efficient, and embedded 

within everyday devices. Traditionally, AI workloads—particularly 

deep learning models—have been executed in cloud servers or high-

performance computing (HPC) infrastructures due to their 

computational and memory intensity [5].However, this approach 

introduces latency, privacy concerns, network dependency, and high 

energy costs, especially for time-critical applications like 

autonomous driving or medical diagnostics. The rapid expansion of 

the Internet of Things (IoT) has amplified the need for Edge AI, 

where computation occurs locally on the device [6]. Real-world 

examples, such as wearable devices detecting cardiac arrhythmias 

on-device or smart cameras identifying anomalies without cloud 

streaming, underscore the importance of edge intelligence. Yet, 

deploying AI on edge devices faces challenges due to strict power 

budgets, limited memory, and low-frequency CPUs, making 

specialized accelerators like the ARM Ethos-U55 essential [1].This 

project focuses on designing a custom Neural Processing Element 

(NPE) to perform core neural network operations, with scalability 

through parallel instantiation. The motivation includes the growing 

demand for Edge AI, limitations of general-purpose processors, and 

the opportunity to explore hardware-software co-design using 

Verilog and VLSI techniques. 

2. Methods 

The methodology involves designing, modelling, and partially 

verifying a Neural Processing Element (NPE) for Edge AI using 

Verilog HDL. The step-by-step design methodology, adapted from 

standard VLSI flows and inspired by the ARM Ethos-U microNPU 

architecture [1], is outlined in the flowchart shown in Fig. 1. 
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Fig 1: Design methodology flowchart for the NPE, from TRM review to synthesis and refinement (all abbreviations explained first time 

mentioned) 

The Finite State Machine (FSM) for controlling data flow, with states including IDLE, LOAD INPUT, DECODE WEIGHT, 

COMPUTE, STORE OUTPUT, and DONE, is illustrated in Fig. 2. 

 

Fig 2: Finite State Machine (FSM) diagram controlling NPE data flow operations (all abbreviations explained first time mentioned) 

 

The NPE is a modular unit optimized for efficiency, with the overall architecture shown in Fig.  
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Fig. 3: Architecture of the Neural Processing Element Four blocks have been implemented and functionally verified using Xilinx 

Vivado: 

 MAC Unit: This block serves as the computational core, 

performing multiply-accumulate (MAC) operations 

essential for convolutional and fully connected neural 

network layers[2]. It processes input feature values and 

weights, multiplies them, and accumulates the results to 

generate partial sums, enabling iterative computation for 

neuron outputs. 

 Weight Decoder: Responsible for decompressing and 

formatting weight data stored in the Shared Buffer, this 

block reduces memory bandwidth requirements by 

preparing weights in a compute-ready format for the MAC 

Unit [1], drawing from arithmetic coding techniques [4]. 

 Shared Buffer: Acts as temporary storage for input feature 

maps, intermediate results, and partial sums, minimizing 

external memory accesses to improve efficiency and 

reduce latency. It supports read and write operations to 

manage data locally. 

 Output Unit: Formats and transfers the final results from 

the MAC Unit to external memory via a DMA interface[3], 

ensuring structured data output for further system use. 

The design process included developing testbenches to simulate 

individual blocks, analysing waveforms to confirm correctness, and 

planning for synthesis with Cadence tools (ongoing)[7]. The Finite 

State Machine (FSM) for controlling data flow is under 

development, with states for input loading, weight decoding, 

computation, and output storage. Remaining blocks (Central 

Control, DMA Controller, IRQ Interface) are in progress, with full 

system integration and synthesis scheduled for completion in the 

next phase. 

3. Results 

The project has successfully implemented and verified four of the 

seven planned NPE blocks using Xilinx Vivado. Detailed 

descriptions of their functionality and simulation results, supported 

by Vivado waveform outputs, are as follows: 

Table I. Comparison of Implemented NPE Blocks 

 

MAC Unit: Simulations conducted on the MAC Unit as illustrated 

in Fig 4 confirmed its ability to perform accurate multiply-

accumulate (MAC) operations, a cornerstone of neural network 

layer computations [2].The testbench applied multiple input sets to 

evaluate functionality across dynamic ranges. For instance, at t ≈ 20 

ns, inputs a = 5 and b = 6 were processed, yielding a product of 30 

(Callout 1: Product = 30 at t ≈ 20 ns), latched on the clock edge as 

observed in the waveform. When the accumulate signal was enabled, 

the unit added this product to a prior sum of 12 (from inputs 3 and 4 

processed earlier), resulting in 42 at t ≈ 40 ns (Callout 2: Accumulate 

Block Name Functionality Key Features Status 

MAC Unit Performs core multiplication and 

accumulation for neural network layers 

Supports iterative computation, handles positive and 

negative values, inspired by optimized MAC designs [2] 

Implemented and 

Verified 

Weight 

Decoder 

Decompresses and formats weight data for 

MAC Unit 

Reduces memory bandwidth, ensures compute-ready 

weights, based on Ethos- U55 architecture [1] 

Implemented and 

Verified 

Shared Buffer Manages temporary storage of input 

feature maps and intermediate results 

Minimizes external memory accesses, supports dual-

port read/write, enhances efficiency [1] 

Implemented and 

Verified 

Output Unit Formats and transfers final results to 

memory 

Ensures structured data output via valid- ready 

handshake, integrates with DMA [3] 

Implemented and 

Verified 
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adds to 42 at t ≈ 40 ns). This demonstrates the unit’s capability to 

handle iterative accumulation, critical for convolutional layers. At t 

≈ 60 ns, with accumulate de-asserted, new inputs of 7 and 2 

produced a product of 14 (Callout 3: Reset and new product = 14 at 

t ≈ 60 ns), resetting the running total and validating reset 

functionality. Subsequent inputs of 2 and 2, starting at t ≈ 80 ns, 

incrementally added 4 per clock cycle (Callout 4: Incremental add = 

4 per cycle at t ≈ 80 ns), 

Confirming the unit’s iterative behaviour over 10 cycles without 

overflow in a 16-bit architecture. This performance aligns with 

optimized MAC designs [2], ensuring reliable partial sum generation 

for Edge AI inference, where millisecond-level latency is often 

required. 

 

Fig. 4: Simulation waveform of the MAC Unit showing multiply-accumulate operations 

Weight Decoder: The Weight Decoder’s role in reducing memory 

bandwidth was validated through simulations, leveraging techniques 

inspired by the ARM Ethos-U55 [1] and arithmetic coding [4]. An 

encoded input of 0x0342 was applied with valid_in asserted at t ≈ 

10 ns (Callout 1: Input 0x0342 at t ≈ 10 ns), resulting in a decoded 

output of 42 on the next clock cycle when valid_out went high 

(Callout 2: Decoded output = 42 on valid_out high). This one-cycle 

latency reflects efficient dequantization, preparing weights for the 

MAC Unit without re-computation. During periods of low valid_in, 

the output remained stable (Callout 3: Stable output during valid_in 

low), demonstrating robust latching and alignment with 

compression standards [4]. The waveform showed no glitches, 

confirming data integrity across 50 ns of testing. This bandwidth 

reduction is crucial for Edge AI, where memory access can dominate 

power consumption [5]. enabling the NPE to support deep learning 

models with compressed weight storage on devices with limited 

DRAM. The simulation result of the Weight Decoder is shown in 

Fig 5. 
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Fig. 5: Simulation waveform of the Weight Decoder showing encoded to decoded weight conversion 

Shared Buffer: The Shared Buffer’s ability to manage temporary 

data was tested with sequential write and dual-port read operations, 

optimizing memory usage for Edge AI efficiency. Sequential writes 

from 0x00 to 0x0F were executed with wr_en asserted (Callout 1: 

Write 0x00 to 0x0F with wr_en), completing over 20 clock cycles 

with no address conflicts. Subsequent dual-port reads, enabled by 

port_en_0 and port_en_1, retrieved values accurately, with a notable 

example at address 0x05 (Callout 2: Dual-port read at 0x05) 

showing simultaneous access without corruption (Callout 3: No 

corruption in read data). The waveform indicated stable data lines 

over 30 ns, with read latency below 2 ns per port. This dual-port 

capability minimizes external memory accesses, a key advantage 

given that DRAM access costs approximately 200 times more 

energy than computation [5]. The buffer’s performance supports local 

data reuse, reducing latency and power demands for IoT applications 

processing feature maps in real-time. The simulation result of the 

Shared Buffer is shown in Fig 6. 

 

Fig. 6: Simulation waveform of the Shared Buffer showing write and dual-port read operations. 
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Output Unit: The Output Unit’s functionality in formatting and 

transferring results was validated through simulations as shown in 

Fig 7 is to be integrated with a DMA interface [3].With write_en 

asserted, an input of data_in = 0x00001234 was mirrored on 

data_out with valid high (Callout 1: Data_out = 0x1234 on valid 

high), observed at t ≈ 20 ns. A subsequent input of 0x00005678 at t 

≈ 30 ns (Callout 2: Sequential input at t ≈ 30 ns) was captured and 

transferred, with the valid-ready handshake ensuring reliability 

(Callout 3: Ready acknowledges transfer at t ≈ 35 ns). The waveform 

showed zero packet loss over 10 cycles, with ready signals aligning 

within 1 ns of valid transitions. This handshake mechanism prevents 

data loss, critical for streaming outputs to external memory in Edge 

AI systems. The unit’s design supports structured data formatting, 

aligning with DMA protocols [3] to facilitate efficient data offloading 

to IoT device storage. 

Fig. 5: Simulation waveform of the Output Unit showing data transfer with valid-ready handshake.

These simulation results collectively affirm the NPE’s modular 

design, with each block contributing to scalable neural network 

execution. The MAC Unit’s computational accuracy, Weight 

Decoder’s bandwidth efficiency, Shared Buffer’s memory 

optimization, and Output Unit’s reliable transfer form a cohesive 

foundation. However, the partial implementation (four of seven 

blocks) limits full system evaluation. Ongoing tests will explore 

integration effects, with synthesis data from Cadence Genus 

expected to provide area, timing, and power metrics in the next 

phase. The current findings suggest the NPE can support low- 

latency inference, a vital requirement for Edge AI applications such 

as real-time health monitoring or smart surveillance, pending 

completion of the remaining blocks. 

4. Discussion 

The partial implementation of the NPE demonstrates its potential for 

Edge AI, with verified blocks showing correct operation and 

scalability [1]. The MAC Unit’s computational accuracy [2]. the 

Weight Decoder’s bandwidth efficiency [4], the Shared Buffer’s 

memory optimization [5], and the Output Unit’s reliable data transfer 
[3] highlight progress toward the project’s goals. The simulation 

results provide empirical support for these functionalities, aligning 

with the design’s aim to reduce latency. However, the incomplete 

status limits comprehensive evaluation, and ongoing work will 

address remaining blocks and synthesis to confirm hardware 

performance. Future scope includes low-power optimizations, such 

as clock gating and voltage scaling in Cadence Genus [8], to achieve 

mill watt-level consumption for battery-powered IoT devices [6]. 

This project aligns with the needs of IoT devices, offering a 

foundation for future enhancements in edge intelligence. 

In conclusion the developed NPE lays a promising foundation for 

Edge AI, with verified blocks validating core functionality. 

Completion of the remaining blocks, full system testing, and low-

power implementation in later stages will enable a robust solution 

for resource-constrained devices.  
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