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Abstract

Objective: To design, model, verify, and synthesize a low-power Neural Processing Element tailored for Edge Al applications, focusing on efficient
execution of neural network operations within resource-constrained environments.

Design: A modular hardware architecture based on an adaptation of the ARM Ethos-U microNPU, incorporating blocks for multiply-accumulate
operations, weight decoding, data buffering, and output formatting.

Subjects/Patients: Not Applicable

Methods: The design was implemented in Verilog HDL, verified using Cadence Xcelium for functional correctness, and synthesized with Cadence
Genus to evaluate area, power, and timing metrics. A finite state machine controls data flow, and four key blocks (MAC Unit, Weight Decoder,
Shared Buffer, and Output Unit) were simulated and partially integrated.

Results: Simulations confirmed correct functionality of implemented blocks, with accurate multiply- accumulate operations, weight decoding, data
storage/retrieval, and output formatting. The architecture demonstrates scalability for parallel instantiation, reduced memory accesses, and
suitability for low-power edge devices.

Conclusion: The proposed Neural Processing Element provides a scalable, efficient hardware solution for Edge Al, enabling low-latency inference
on loT devices while minimizing power consumption.

Keywords: Artificial Neural Networks, Edge Al, Low-Power Design, Multiply-Accumulate, Neural Processing Element, Verilog HDL, Weight
Decoding

where computation occurs locally on the device Real-world
examples, such as wearable devices detecting cardiac arrhythmias

1. Introduction

Artificial Intelligence (Al) is no longer a futuristic concept but a
mainstream technology driving innovation across nearly every
sector. From wearable health monitors that track and analyze bio
signals in real-time, to smart surveillance cameras capable of
detecting suspicious activities, to autonomous drones used for
disaster management and delivery services, Al has become a
cornerstone of modern digital systems. According to market reports,
the global Al market is projected to exceed USD 1.8 trillion by 2030

, with a significant portion of this growth driven by edge-based
deployments. This trend reflects the increasing demand for Al that
is not only powerful but also accessible, efficient, and embedded
within everyday devices. Traditionally, Al workloads—particularly
deep learning models—have been executed in cloud servers or high-
performance computing (HPC) infrastructures due to their
computational and memory intensity °‘However, this approach
introduces latency, privacy concerns, network dependency, and high
energy costs, especially for time-critical applications like
autonomous driving or medical diagnostics. The rapid expansion of
the Internet of Things (IoT) has amplified the need for Edge Al,
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on-device or smart cameras identifying anomalies without cloud
streaming, underscore the importance of edge intelligence. Yet,
deploying Al on edge devices faces challenges due to strict power
budgets, limited memory, and low-frequency CPUs, making
specialized accelerators like the ARM Ethos-U55 essential ! This
project focuses on designing a custom Neural Processing Element
(NPE) to perform core neural network operations, with scalability
through parallel instantiation. The motivation includes the growing
demand for Edge Al, limitations of general-purpose processors, and
the opportunity to explore hardware-software co-design using
Verilog and VLSI techniques.

2. Methods

The methodology involves designing, modelling, and partially
verifying a Neural Processing Element (NPE) for Edge Al using
Verilog HDL. The step-by-step design methodology, adapted from
standard VLSI flows and inspired by the ARM Ethos-U microNPU
architecture ', is outlined in the flowchart shown in Fig. 1.
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Fig 1: Design methodology flowchart for the NPE, from TRM review to synthesis and refinement (all abbreviations explained first time
mentioned)

The Finite State Machine (FSM) for controlling data flow, with states including IDLE, LOAD INPUT, DECODE WEIGHT,
COMPUTE, STORE OUTPUT, and DONE, is illustrated in Fig. 2.

STORE DONE AND MORE OPS

LOAD DONE DECODE DONE COMPUTE DONE

LOAD DECODE STORE
INPUT WEIGHT OUTPUT

STORE DONE AND NO MORE OPS

RESET/ACK

Fig 2: Finite State Machine (FSM) diagram controlling NPE data flow operations (all abbreviations explained first time mentioned)

The NPE is a modular unit optimized for efficiency, with the overall architecture shown in Fig.
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Fig. 3: Architecture of the Neural Processing Element Four blocks have been implemented and functionally verified using Xilinx

Vivado:

e  MAC Unit: This block serves as the computational core,
performing multiply-accumulate (MAC) operations
essential for convolutional and fully connected neural
network layers'? It processes input feature values and
weights, multiplies them, and accumulates the results to
generate partial sums, enabling iterative computation for
neuron outputs.

e  Weight Decoder: Responsible for decompressing and
formatting weight data stored in the Shared Buffer, this
block reduces memory bandwidth requirements by
preparing weights in a compute-ready format for the MAC
Unit 1] drawing from arithmetic coding techniques

e  Shared Buffer: Acts as temporary storage for input feature
maps, intermediate results, and partial sums, minimizing
external memory accesses to improve efficiency and
reduce latency. It supports read and write operations to
manage data locally.

Table 1. Comparison of Implemented NPE Blocks

e  Output Unit: Formats and transfers the final results from
the MAC Unit to external memory via a DMA interface'®/,
ensuring structured data output for further system use.

The design process included developing testbenches to simulate
individual blocks, analysing waveforms to confirm correctness, and
planning for synthesis with Cadence tools (ongoing)'’”\. The Finite
State Machine (FSM) for controlling data flow is under
development, with states for input loading, weight decoding,
computation, and output storage. Remaining blocks (Central
Control, DMA Controller, IRQ Interface) are in progress, with full
system integration and synthesis scheduled for completion in the
next phase.

3. Results

The project has successfully implemented and verified four of the
seven planned NPE blocks using Xilinx Vivado. Detailed
descriptions of their functionality and simulation results, supported
by Vivado waveform outputs, are as follows:

Block Name Functionality

Key Features Status

MAC Unit Performs core multiplication and Supports iterative computation, handles positive and Implemented and
accumulation for neural network layers negative values, inspired by optimized MAC designs [?| Verified

Weight Decompresses and formats weight data for | Reduces memory bandwidth, ensures compute-ready Implemented and

Decoder MAC Unit weights, based on Ethos- U55 architecture [ Verified

Shared Buffer| Manages temporary storage of input
feature maps and intermediate results

Minimizes external memory accesses, supports dual-
port read/write, enhances efficiency (! Verified

Implemented and

Output Unit | Formats and transfers final results to

Ensures structured data output via valid- ready
memory handshake, integrates with DMA [ Verified

Implemented and

MAC Unit: Simulations conducted on the MAC Unit as illustrated
in Fig 4 confirmed its ability to perform accurate multiply-
accumulate (MAC) operations, a cornerstone of neural network
layer computations '“.The testbench applied multiple input sets to
evaluate functionality across dynamic ranges. For instance, at t = 20
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ns, inputs a = 5 and b = 6 were processed, yielding a product of 30
(Callout 1: Product = 30 at t = 20 ns), latched on the clock edge as
observed in the waveform. When the accumulate signal was enabled,
the unit added this product to a prior sum of 12 (from inputs 3 and 4
processed earlier), resulting in 42 at t =~ 40 ns (Callout 2: Accumulate
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adds to 42 at t ~ 40 ns). This demonstrates the unit’s capability to
handle iterative accumulation, critical for convolutional layers. At t
=~ 60 ns, with accumulate de-asserted, new inputs of 7 and 2
produced a product of 14 (Callout 3: Reset and new product = 14 at
t = 60 ns), resetting the running total and validating reset
functionality. Subsequent inputs of 2 and 2, starting at t =~ 80 ns,
incrementally added 4 per clock cycle (Callout 4: Incremental add =
4 per cycle at t = 80 ns),

Confirming the unit’s iterative behaviour over 10 cycles without
overflow in a 16-bit architecture. This performance aligns with
optimized MAC designs '“/, ensuring reliable partial sum generation
for Edge Al inference, where millisecond-level latency is often
required.

# clk

# reset

> Ma[70]
) Wh[Tg

+ accumulate

> ¥ result{15:]

t=30ns

. Product=30 at

4, Incremental
add =4 per cycle
att~ 80 ns

2, Accumulate | | 3. Reset and

addsto42att | | new product =
<40 ns [4att~60ns

Fig. 4: Simulation waveform of the MAC Unit showing multiply-accumulate operations

Weight Decoder: The Weight Decoder’s role in reducing memory
bandwidth was validated through simulations, leveraging techniques
inspired by the ARM Ethos-U55 !*! and arithmetic coding “} An
encoded input of 0x0342 was applied with valid_in asserted at t =
10 ns (Callout 1: Input 0x0342 at t = 10 ns), resulting in a decoded
output of 42 on the next clock cycle when valid_out went high
(Callout 2: Decoded output = 42 on valid_out high). This one-cycle
latency reflects efficient dequantization, preparing weights for the
MAC Unit without re-computation. During periods of low valid_in,

WWW.ijsei.in

the output remained stable (Callout 3: Stable output during valid_in
low), demonstrating robust latching and alignment with
compression standards The waveform showed no glitches,
confirming data integrity across 50 ns of testing. This bandwidth
reduction is crucial for Edge Al, where memory access can dominate
power consumption ! enabling the NPE to support deep learning
models with compressed weight storage on devices with limited
DRAM. The simulation result of the Weight Decoder is shown in
Fig 5.
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Fig. 5: Simulation waveform of the Weight Decoder showing encoded to decoded weight conversion

Shared Buffer: The Shared Buffer’s ability to manage temporary
data was tested with sequential write and dual-port read operations,
optimizing memory usage for Edge Al efficiency. Sequential writes
from 0x00 to OXOF were executed with wr_en asserted (Callout 1:
Write 0x00 to OxOF with wr_en), completing over 20 clock cycles
with no address conflicts. Subsequent dual-port reads, enabled by
port_en_0and port_en_1, retrieved values accurately, with a notable
example at address 0x05 (Callout 2: Dual-port read at 0x05)
showing simultaneous access without corruption (Callout 3: No

corruption in read data). The waveform indicated stable data lines
over 30 ns, with read latency below 2 ns per port. This dual-port
capability minimizes external memory accesses, a key advantage
given that DRAM access costs approximately 200 times more
energy than computation I The buffer’s performance supports local
data reuse, reducing latency and power demands for 10T applications
processing feature maps in real-time. The simulation result of the
Shared Buffer is shown in Fig 6.
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e port en_1
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2
10 111 (12 113 (14 (15 (16
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Fig. 6: Simulation waveform of the Shared Buffer showing write and dual-port read operations.
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Output Unit: The Output Unit’s functionality in formatting and
transferring results was validated through simulations as shown in
Fig 7 is to be integrated with a DMA interface °With write_en
asserted, an input of data_in = 0x00001234 was mirrored on
data_out with valid high (Callout 1: Data_out = 0x1234 on valid
high), observed at t = 20 ns. A subsequent input of 0x00005678 at t
~ 30 ns (Callout 2: Sequential input at t = 30 ns) was captured and
transferred, with the valid-ready handshake ensuring reliability

(Callout 3: Ready acknowledges transfer at t = 35 ns). The waveform
showed zero packet loss over 10 cycles, with ready signals aligning
within 1 ns of valid transitions. This handshake mechanism prevents
data loss, critical for streaming outputs to external memory in Edge
Al systems. The unit’s design supports structured data formatting,
aligning with DMA protocols ©°! to facilitate efficient data offloading
to 10T device storage.

# ck
& reset_n
> W data_in[31:0] 00005678 - 00001;234
& write_en 0
> M data_out[31:0] 00005678
8 valid

4 ready

3. Sequential
input at t = 30 ns

00005678

EXEXXXXEX 00001234 00005678

1. Data_out=0x1234 | | 2. Ready
on valid high acknowledges
transfer

Fig. 5: Simulation waveform of the Output Unit showing data transfer with valid-ready handshake.

These simulation results collectively affirm the NPE’s modular
design, with each block contributing to scalable neural network
execution. The MAC Unit’s computational accuracy, Weight
Decoder’s bandwidth efficiency, Shared Buffer’s memory
optimization, and Output Unit’s reliable transfer form a cohesive
foundation. However, the partial implementation (four of seven
blocks) limits full system evaluation. Ongoing tests will explore
integration effects, with synthesis data from Cadence Genus
expected to provide area, timing, and power metrics in the next
phase. The current findings suggest the NPE can support low-
latency inference, a vital requirement for Edge Al applications such
as real-time health monitoring or smart surveillance, pending
completion of the remaining blocks.

4. Discussion

The partial implementation of the NPE demonstrates its potential for
Edge Al, with verified blocks showing correct operation and
scalability *. The MAC Unit’s computational accuracy . the
Weight Decoder’s bandwidth efficiency '*, the Shared Buffer’s
memory optimization !, and the Output Unit’s reliable data transfer
highlight progress toward the project’s goals. The simulation
results provide empirical support for these functionalities, aligning
with the design’s aim to reduce latency. However, the incomplete
status limits comprehensive evaluation, and ongoing work will
address remaining blocks and synthesis to confirm hardware
performance. Future scope includes low-power optimizations, such
as clock gating and voltage scaling in Cadence Genus '°), to achieve
mill watt-level consumption for battery-powered 10T devices
This project aligns with the needs of 10T devices, offering a
foundation for future enhancements in edge intelligence.
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In conclusion the developed NPE lays a promising foundation for
Edge Al, with verified blocks validating core functionality.
Completion of the remaining blocks, full system testing, and low-
power implementation in later stages will enable a robust solution
for resource-constrained devices.
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