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Abstract 
This study aims to model the Human Development Index (HDI) in Indonesia based on education quality indicators using multivariable kernel 

regression, and to identify the optimal bandwidth selection method through Cross-Validation (CV) and Generalized Cross-Validation (GCV). 

Employing a quantitative modeling design, the research utilizes secondary data comprising educational and HDI indicators from 34 Indonesian 

provinces in 2023. The analysis applies multivariable kernel regression with a triangle kernel function, with mean years of schooling and expected 

years of schooling as predictor variables. Bandwidth optimization is performed using CV and GCV, and model performance is assessed through 

the coefficient of determination (R²) and Mean Absolute Percentage Error (MAPE). The results indicate that the GCV method yields a slightly 

better model, with R² of 86.32% and MAPE of 1.94%, compared to the CV method, which as an R² of 85.92% and MAPE of 1.96%. While both 

models show excellent forecasting accuracy, GCV demonstrates superior stability and predictive performance. These findings confirm that 

multivariable kernel regression, particularly when optimized with GCV, is an effective approach for modeling complex data patterns such as HDI 

based on educational indicators in Indonesia. 

Keywords: Cross-Validation, Education, Generalized Cross-Validation, Human Development Index, Kernel Regression, Nonparametric 

Regression. 

 

Introduction 

Nonparametric regression is a flexible and effective method for 

modeling data without requiring strict parametric assumptions 

(Abdy, 2019). One commonly used approach in nonparametric 

regression is kernel regression, which utilizes the Nadaraya-Watson 

estimator to measure the relationship between response and 

predictor variables (Lamusu et al., 2020). This estimator relies on 

two parameters that called kernel function and bandwidth parameter. 

The kernel function assigns weights based on the distance between 

observation 𝑋𝑖 and point 𝑥, while bandwidth controls the 

smoothness of the estimated density (Ogden, 1997). There are 

several types of kernel functions, including Gaussian, triangle, 

Epanechnikov, biweight, and uniform. Accurate bandwidth selection 

is crucial for determining the best regression model (Hardle, 1994). 

Optimization methods such as Cross-Validation (CV) and 

Generalized Cross-Validation (GCV) are used to achieve optimal 

bandwidth, preventing overfitting and underfitting to the model 

(Suparti et al., 2018). 

Several studies have confirmed the advantages of kernel 

nonparametric regression in data analysis. (Sadek & Mohammed, 

2024) found that kernel regression achieved a coefficient of 

determination of 95%, significantly higher than the 23% obtained 

using parametric regression. Puspitasari et al. (2012) compared 

parametric and nonparametric kernel regression in stock market 

data, finding that the lowest Mean Squared Error (MSE) occurred in 

the nonparametric regression with a triangle kernel. Similarly, Astuti 

et al. (2018) analyzed kernel regression using various kernel 

functions and found consistent estimation results. Razak et al. (2019) 

applied multivariable kernel regression to malnutrition data in 

Indonesia, obtaining a coefficient of determination of 84.73%. 

Furthermore, Lamusu et al. (2020) compared CV and GCV 

optimization methods in kernel regression and concluded that GCV 

provided a better model evaluation than CV for corn production 

estimation. 

Based on the above findings, this study employs 

multivariable kernel regression using the triangle kernel function 

and compares CV and GCV optimization. The study analyzes the 

relationship between education quality and Human Development 

Index (HDI) in Indonesia in 2023. HDI is a comparative measure 

that encompasses life expectancy, education, and living standards 

globally (Raghuvanshi & Verma, 2024). The education quality 

indicators used in HDI include the years of schooling and expected 

years of schooling (Badan Pusat Statistik, 2024). This study focuses 

on the education dimension due to its crucial role in improving 

quality of life and contributing to economic and social development. 
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Material and Methods 

2.1. Nonparametric regression 

Nonparametric regression is one method used to model data when 

the form of the regression function form is unknown. In some cases, 

the observed data analyzed may form a certain pattern such as linear, 

but do not meet the assumptions of the parametric model. In this 

condition, modeling using the parametric approach can be less 

precise and can potentially be misleading (Suparti et al., 2018). 

Alternatively, nonparametric regression can be used in modeling. 

The function in nonparametric regression is assumed to be smooth 

so that it has high flexibility to estimate the regression function 

(Eubank, 1999). Function estimation is done based on observation 

data using certain modeling techniques. The nonparametric 

regression model can be systematically written as follows: 

𝑌𝑖 = 𝑚(𝑥𝑖) + 𝜀𝑖 ,    𝑖 = 1,2, … , 𝑛    (1) 

where: 

𝑌𝑖: response variable of observation 𝑖 

𝑚(𝑥𝑖): function representing the predictor variable of observation 𝑖 

𝜀𝑖: error term with mean 0 and variance 𝜎2  

There are several techniques for modeling functions that can be 

used, namely kernels, splines, local polynomials, Fourier series, and 

wavelets (Hardle, 1994). 

2.2. Kernel Density Estimator 

The kernel density estimator is a development of the histogram 

estimator and the naive estimator, where the main goal is to smooth 

the data distribution by giving weight to each observation data, so 

that closer observations contribute more to the estimation results 

(Ogden, 1997). The histogram estimator has a weakness in 

describing the existing data distribution because its dependence on 

the initial value 𝑥0 and the binwidth h results in a graph that is too 

rigid. Similar to the naive estimator, this estimator depends on a rigid 

function weight because its value will always be the same in a certain 

weight which causes a less smooth distribution graph (Silverman, 

1986). (Rosenblatt, 1956) and (Parzen, 1962) introduced an 

alternative estimator also called the kernel density estimator 

(Machkouri, 2011). 

Kernel density estimators are more flexible than histogram 

and naive estimators because they do not rely on fixed bin sizes or 

rigid function weights and allow for smoother results. Kernel density 

estimators are defined as follows (Ogden, 1997): 

𝑓ℎ(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥 − 𝑋𝑖)𝑛

𝑖=1       (2) 

The kernel density estimator is influenced by two parameters: the 

kernel function 𝐾(∙) and the smoothing parameter or bandwidth ℎ. 

The kernel function serves to provide weights based on the distance 

between observation 𝑋𝑖 and point 𝑥, while the bandwidth controls 

how smooth or coarse the resulting density estimate is (Ogden, 

1997). The kernel function is denoted as: 

𝐾ℎ(𝑢) =
1

ℎ
𝐾 (

𝑢

ℎ
) , for − ∞ < 𝑢 < ∞, ℎ > 0  (3) 

where 𝐾(∙) is the kernel function and h denote the bandwidth 

(Hardle, 1994). 

Kernel function 𝐾 is a continuous, real-valued, bounded, 

and∫ 𝐾(𝑢)𝑑𝑢 = 1
∞

−∞
. In addition, the kernel function is an even 

function, meaning it is symmetric to the origin, thus 

∫ 𝑢𝐾(𝑢)𝑑𝑢 = 0
∞

−∞
 (Suparti et al., 2018). Some types of kernel 

functions that are commonly used to estimate are presented in Table 

I (Ogden, 1997): 

The triangle kernel used in this study, provides a linearly decreasing 

weight, with higher weights on data close to the symmetric center 

and decreasing gradually for data further from the symmetric center. 

This kernel provides stable and easy-to-interpret estimates. 

The kernel density estimator in Equation (2) can also be written by 

substituting the kernel function as in Equation (3) so that it can be 

denoted as Equation (4). 

𝑓ℎ(𝑥) =
1

𝑛
∑

1

ℎ
𝐾 (

𝑥−𝑋𝑖

ℎ
)𝑛

𝑖=1      (4) 

where 𝐾 is the kernel function, and ℎ is the smoothing parameter or 

bandwith. According to Suparti et al., (2018), the kernel function 𝐾 

is a continuous, real-valued, bounded, symmetric, and the function 

satisfies ∫ 𝐾(𝑢)𝑑𝑢 = 1
∞

−∞
. 

The kernel density estimator can also be extended to estimate the 

density of multivariable data. For instance, if there are 𝑑 predictor 

variables, the kernel density estimation in 𝑑-dimensional space can 

be obtained using a multivariable kernel function 𝜅(𝑢1, 𝑢2, … , 𝑢𝑑). 

This function can be simplified by multiplying the kernel functions 

for each dimension 𝑑, assuming that 𝑥1, 𝑥2, … , 𝑥𝑛 are independent. 

The multivariable kernel density estimator is given by: 

�̂�𝒉(𝒙) =
1

𝑛
∑ {∏

1

ℎ𝑗
𝐾 (

𝑥𝑗−𝑋𝑖𝑗

ℎ𝑗
)𝑑

𝑗=1 }𝑛
𝑖=1     (5) 

Table I. Types of Kernel Functions 

Name Kernel Function 

Uniform 𝐾(𝑥) = {
1

2
, if |𝑥| ≤ 1

  0, otherwise
  

Triangle 𝐾(𝑥) = {
1 − |𝑥|, if |𝑥| ≤ 1

  0, otherwise
  

Epanechnikov 𝐾(𝑥) = {
3

4
(1 − 𝑥2)2, if |𝑥| ≤ 1

  0, otherwise
  

Gaussian 𝐾(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2 , −∞ < x < ∞  

Biweight 𝐾(𝑥) = {
15

16
(1 − 𝑥2)2, if |𝑥| ≤ 1

  0, otherwise
  

 

2.3. Kernel Regression 

Kernel regression is a nonparametric regression technique used to 

predict the regression function values that satisfy Equation (1). One 

method of estimating the regression function 𝑚(𝑥𝑖) is by using the 

Nadaraya-Watson estimator (Hardle, 1994). If the data contains 

more than one predictor variable, for example, 𝑑 variables, 

represented as 𝑿𝒊 = (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑑), the regression model can be 

written as follows (García, 2023): 

�̂�(𝒙) =
∑ ∏

1

ℎ𝑗
𝐾(

𝑥𝑗−𝑋𝑖𝑗

ℎ𝑗
)𝑑

𝑗=1  𝑛
𝑖=1 𝑌𝑖

∑ ∏
1

ℎ𝑗
𝐾(

𝑥𝑗−𝑋𝑖𝑗

ℎ𝑗
)𝑑

𝑗=1  𝑛
𝑖=1

     (6) 

where: 

�̂�(𝒙) : estimated regression function 

𝑌𝑖 : observed response variable 

𝐾(. ) : kernel function 

𝑥𝑗 : observation point for predictor variable 𝑗 

𝑋𝑖𝑗 : observed value for predictor variable 𝑗 in observation 𝑖 
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ℎ𝑗 : bandwith vlue with vector 𝒉 = (ℎ1, ℎ2, … , ℎ𝑑) 

𝑛: number of observations 

𝑑 : number of predictor variables 

2.4. Optimal Bandwidth Selection 

In kernel regression analysis, choosing the right optimal bandwidth 

(ℎ) plays an important role in controlling the smoothness of the 

estimated curve. If the tested bandwidth value is too small, the 

resulting curve will be too rough or have a jagged structure. 

Conversely, if the tested bandwidth value is too large, the resulting 

curve will be too smooth or oversmooth and produce high bias 

because too much smoothing is done and the variance is low (Hardle, 

1994). The optimal bandwidth value will not produce high or low 

variance and bias. Based on this, it is necessary to choose the right 

optimal bandwidth so that it produces the best estimated value.  

In the linear estimation approach, for each value of the 

model complexity parameter ℎ, there is a matrix 𝐻(ℎ) of size 𝑛 × 𝑛 

which is symmetric and positive semidefinite (Takezawa, 2006). The 

value of the function weight 𝑊𝑖(𝑥) is the same as the matrix 𝐻(ℎ), 

so that 𝑊𝑖(𝑥) = 𝐻(ℎ) with the elements of the matrix 𝐻(ℎ) are 𝐻𝑖𝑗 

(Astuti et al., 2018). 𝐻𝑖𝑗 can be denoted as follows: 

𝐻𝑖𝑗 =
𝐾(

𝑥−𝑋𝑖
ℎ

)

∑ 𝐾(
𝑥−𝑋𝑘

ℎ
)𝑛

𝑘=1

     (7) 

where 𝐾(∙) is the kernel function and ℎ is bandwidth. The methods 

used to determine the optimal bandwidth are Cross-Validation (CV) 

and Generalized Cross-Validation (GCV). 

2.5.  Cross-Validation (CV) 

The optimal bandwidth is selected based on the minimum CV value 

(Carmack et al., 2011). The systematic form of the CV optimization 

method for multivariable data is given as follows: 

𝐶𝑉(𝒉) =
1

𝑛
∑ (

𝑌𝑗−�̂�ℎ(𝑿𝒋)

1−𝐻𝑗𝑗(𝒉) 
)

2
𝑛
𝑖=1    (8) 

where: 

𝐶𝑉(𝒉) : Cross-Validation value containing the bandwith vector 𝒉 =

(ℎ1, ℎ2, … , ℎ𝑑) 

𝑛 : number of observations 

𝐻𝑗𝑗(𝒉) : diagonal element of the smoothing matrix 𝑯 

�̂�ℎ(𝑿𝒋) : estimated value at 𝑋𝑗 

2.6.  Generalized Cross-Validation (GCV) 

Generalized Cross-Validation (GCV) is another optimization 

method that can be used to determine the optimal model. GCV 

minimizes the GCV function and is derived from CV by replacing 

𝐻𝑗𝑗  with its mean over all observations 𝐻𝑗𝑗 =
∑ 𝐻𝑗𝑗

𝑛
𝑗=1

𝑛
. The GCV 

function for multivariable data is given as follows: 

𝐺𝐶𝑉(𝒉) =
𝑛2𝑀𝑆𝐸(𝒉)

(𝑛−∑ 𝐻𝑗𝑗
𝑛
𝑗=1 )

2    (9) 

where: 

𝐺𝐶𝑉(𝒉) : Generalized Cross-Validation value with bandwith vector 

𝒉 = (ℎ1, ℎ2, … , ℎ𝑑) 

𝑛 : number of observations 

𝑀𝑆𝐸(𝒉) : Mean Squared Error at bandwith ℎ = (ℎ1, ℎ2, … , ℎ𝑑) 

∑ 𝐻𝑗𝑗
𝑛
𝑗=1 : total weight of the smoothing matrix with bandwith h for 

row 𝑗 and column 𝑗 

2.7. Coefficient of Determination 

A regression model is considered optimal if the predictor variables 

can explain the response variable. The goodness of fit of a model can 

be measured using the coefficient of determination (Gujarati, 1972). 

The coefficient of determination is formulated as follows: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑ (𝑌𝑖−�̂�𝑖)2𝑛
𝑖=1

∑ (𝑌𝑖−�̅�)2𝑛
𝑖=1

  (10) 

where 

𝑅2 : coefficient of determination 

SSE: sum of squares error 

SST: sum of squares total 

𝑌𝑖 : the actual value of the response variable at observation 𝑖 

�̂�𝑖 : the estimated value of the i-th observation with �̂�𝑖 = �̂�(𝑋𝑖), 𝑖 =

1,2, … , 𝑛 

�̅� : average actual value of response variable 

The coefficient of determination has a value between 0 and 1. A 

coefficient value approaching 1 will produce a better model and vice 

versa if the coefficient of determination value approaches 0 then the 

model created will be less good. The criteria for model quality based 

on 𝑅² are categorized as follows: an 𝑅² value greater than 67% 

indicates a strong model, whereas an 𝑅² value between 19% and 

33% suggests a weak model (Chin, 1998). 

2.8. Mean Absolute Percentage Error (MAPE) 

In addition to 𝑅2, another method used to evaluate model 

performance is the MAPE. MAPE is a measure of accuracy used to 

calculate the average absolute percentage error. This value can be 

calculated using the following formula: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (|

𝑌𝑖−�̂�𝑖

𝑌𝑖
|)𝑛

𝑖=1 × 100%   

  (11) 

The lower the MAPE value, the more accurate the forecasting model 

used, conversely, the higher the MAPE value, the poorer the 

forecasting model's ability (Maricar, 2019). According to Chang et 

al., (2007), the evaluation criteria for forecasting performance are as 

follows: a MAPE value below 10% indicates excellent forecasting 

ability, while a MAPE value of 50% or more suggests poor 

forecasting performance with high error rates and low reliability. 

2.9. Data and Research Stages 

This study utilizes secondary data on the Human Development Index 

(HDI) as the response variable and education quality data—

including the mean years of schooling and expected years of 

schooling as predictor variables for Indonesia's provinces in 2023. 

The dataset consists of 34 observations. The data was randomly 

divided into training (80%) and testing (20%) sets. 

The study employs RStudio. The data analysis steps include: 

1. Splitting the dataset into training and testing sets 

2. Analyzing the scatterplot relationships between predictor 

and response variables 

3. Conducting a multicollinearity test on predictor variables 

in the training data 

4. Determining bandwidth values for evaluation 

5. Selecting the appropriate kernel function 

6. Applying optimization methods (CV and GCV) 

7. Identifying the best model from the optimization methods 

8. Evaluating the model’s goodness-of-fit using 𝑅2 

9. Estimating test data using the best model obtained 

10. Comparing the best models from CV and GCV 
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Results and Discussion 

3.1. Data Description 

The research data contains education quality data in the form of 

average length of schooling (𝑋1) and expected length of schooling 

(𝑋2) as predictor variables and HDI (𝑌) s as response variable. The 

research data was randomly divided into two parts, training data and 

testing data. The training data comprise of 80% of the total data, 

which is 27 data based on provincial data from Indonesia in 2023. 

The testing data comprise 20% of the total data, or 7 data. The 

training data are used to build regression model, while the testing 

data are used to evaluate the model’s performance. Descriptive 

statistics of education quality data, including average length of 

schooling (𝑋1) and expected length of schooling (𝑋2) against HDI 

(𝑌) can be shown in Table II. 

Based on Table II, the HDI value has an average of 72.25 

with the lowest HDI value in Papua Province, which is 62.25 and the 

highest HDI value in DKI Jakarta Province, which is 82.46. In 

addition, the predictor variable for the average length of schooling 

found that the variable has an average of 8.89 with the lowest 

average length of schooling in Papua Province, which is 7.17 and 

the highest average length of schooling in DKI Jakarta Province, 

which is 11.45. Expected length of schooling has an average of 13.31 

with the lowest value in Papua Province, which is 11.15 and the 

highest value in DI Yogyakarta Province, which is 15.66.  

The form of the relationship between the predictor variables 

of average length of schooling and expected length of schooling with 

the response variable HDI can be seen in 3D in Fig. 1 and in 2D in 

Fig. 2 and Fig. 3. Based on the 3D data pattern in Fig. 1, it is found 

that the relationship between the variables of average length of 

schooling and expected length of schooling with the HDI variable 

appears to form a random pattern. 

However, there is a linear pattern that is formed and there is 

data that has quite different values so that there are several outlier 

data that can be seen in Fig. 1. Based on Fig. 2, the relationship 

between the average length of schooling and the HDI form a linear 

pattern, while the random pattern is formed by the relationship 

between the expected length of schooling and the HDI in Fig. 3. 

To ensure there is no correlation between predictor variables, 

a multicollinearity test is conducted using the VIF value. Both 

predictor variables have a VIF value of 1.28, which is less than 10. 

Therefore, there is no multicollinearity between the variables of 

average length of schooling and expected length of schooling. 

Table II. Data Description 

Statistic 𝑿𝟏 𝑿𝟐 𝒀 

Observation count 27 27 27 

Minimum value 7.15 11.15 62.25 

Maximum value 11.45 15.66 82.46 

Median 8.81 13.22 7.77 

Mean 8.89 13.31 72.25 

 

 
Fig. 1: 3D Plot of Predictor Variables against Response Variables 
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Fig. 2. 2D plot between Mean years of Schooling and HDI 

 

 
Fig. 3. 2D plot between Expected Years of Schooling and HDI 

 

3.2. Kernel Regression Modeling 

Based on Fig. 1, the data has a pattern that tends to be random and 

in Fig. 2, a linear pattern is seen formed by the relationship between 

the average length of schooling and the HDI. With the random 

pattern seen in the data plot, multivariable kernel nonparametric 

regression modeling can be used to overcome complex patterns 

more accurately. 

Multivariable kernel modeling begins by determining the 

bandwidth limits to be tested on previously adjusted training data. 

The bandwidth limits in question include the lower limit of the 

bandwidth value, the upper limit of the bandwidth value, and the 

increase between the bandwidth values of each predictor variable as 

in Table III. Based on Table III, the minimum bandwidth value tested 

is 1, the maximum bandwidth value is 2, and the bandwidth increase 

is 0.1 on both predictor variables. The number of bandwidth 

combinations from the two predictor variables is 121. The number 

of bandwidths is formed from each element tested, namely the 

combination of each element of the value ℎ1 and ℎ2 = 11 × 11.  

In addition, kernel regression modeling also requires kernel 

functions and optimization methods in determining the best model 

of each combination of bandwidth tested. In this study, the kernel 

triangle function is used in modeling so that the model shape is in 

accordance with the following equation 

�̂�(𝒙) =
∑ ∏

1

ℎ𝑗
𝐾(

𝑥𝑗−𝑋𝑖𝑗

ℎ𝑗
)𝑑

𝑗=1
𝑛
𝑖=1 𝑌𝑖

∑ ∏
1

ℎ𝑗
𝐾(

𝑥𝑗−𝑋𝑖𝑗

ℎ𝑗
)𝑑

𝑗=1
𝑛
𝑖=1

  

=
∑

1

ℎ1

1

ℎ2
𝐾(

𝑥1−𝑋𝑖1
ℎ1

)𝐾(
𝑥2−𝑋𝑖2

ℎ2
)𝑛

𝑖=1 𝑌𝑖

∑
1

ℎ1

1

ℎ2
𝐾(

𝑥1−𝑋𝑖1
ℎ1

)𝐾(
𝑥2−𝑋𝑖2

ℎ2
)𝑛

𝑖=1

  

=
∑ {1−|

𝑥1−𝑋𝑖1
ℎ1

|}𝐼(|
𝑥1−𝑋𝑖1

ℎ1
|≤1){1−|

𝑥1−𝑋𝑖2
ℎ2

|}𝐼(|
𝑥2−𝑋𝑖2

ℎ2
|≤1)𝑛

𝑖=1 𝑌𝑖

∑ {1−|
𝑥1−𝑋𝑖1

ℎ1
|}𝐼(|

𝑥1−𝑋𝑖1
ℎ1

|≤1){1−|
𝑥1−𝑋𝑖2

ℎ2
|}𝐼(|

𝑥2−𝑋𝑖2
ℎ2

|≤1)𝑛
𝑖=1

  

3.3. Optimization using Cross-Validation (CV) 

After calculating the entire combination of tested bandwidths as in 

Table III, various models are formed from each combination of 

bandwidths. Therefore, an optimization method is needed, one of 

which is CV, to determine the best model from the various models 

generated through the calculation of each existing bandwidth. The 

steps in determining the best model using the CV optimization 

method are as follows: 

1. Determining Optimal Bandwidth 

The determination of the optimal bandwidth is done through the 

kernel regression modeling process by imputing bandwidth as in 

Table III and using the kernel triangle function by selecting the CV 

optimization method in the GUI application. From the analysis 

results, 10 combinations were obtained that produced the smallest 

CV value from each combination of bandwidth tested and can be 

seen in Table IV. Based on the table, the optimal bandwidth values 

achieved using the CV optimization method include the optimal 

bandwidth value on the 𝑋1 variable which is 1.1 and the optimal 

bandwidth value on the 𝑋2 variable which is 1.6 with a CV value of 

8.7675. The combined form of the results of the CV optimization is 

presented in Fig. 4. 
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Fig. 4. Plot of bandwidth combination using CV 

Fig. 4 shows a plot of the tested bandwidth combinations using the 

CV method. From the test results, the minimum CV value is obtained 

at the 18th combination which is marked with a red dot on the graph. 

Based on the tested bandwidth combinations, the combinations have 

a range of values from 1 to 2 with an increase of 0.1 as shown in 

Table 3. However, Fig. 4 only shows starting from the 18th 

combination due to constraints on the previous combinations. 

Combinations lower than 18 are not shown in the graph because 

there is a value of 1 in the 𝐻𝑗𝑗(ℎ). This causes the denominator in 

the CV calculation to be infinite, making it impossible to calculate. 

Therefore, the graph only shows valid bandwidth combinations. The 

kernel regression model of optimal bandwidth can be written as 

follows: 
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|}𝐼(|

𝑥2−𝑋𝑖2
1,6

|≤1)27
𝑖=1

  

2. Model Feasibility Test 

After obtaining the best model with optimal bandwidth from the CV  

optimization method, the model is used to calculate the estimated 

value of each actual value of its response. Furthermore, the model 

will be assessed for its feasibility using the coefficient of 

determination based on its estimation results. The plot of the model 

formed from the actual value with the calculated estimated value can 

be seen as follows: 

Based on the output in Fig. 5, the estimated data results can be said 

to be close to the actual data well. The coefficient of determination 

obtained is 85.92%. This means that the predictor variables of 

average length of schooling and expected length of schooling have 

an influence of 85.92% on the HDI response variable, while the 

remaining 14.08% is influenced by other variables not tested in the 

study. 

3. Model Performance Evaluation 

The best model that has been formed using the CV method will be 

evaluated for its performance based on the MAPE measure. The 

MAPE value obtained is 1.96%. This indicates that the constructed 

model demonstrates excellent forecasting performance. 

 
Fig. 5: Estimation Curve and Actual Data with CV Optimization 

3.4. Optimization Using Generalized Cross-Validation (GCV) 

The application of GCV is expected to provide a more stable and 

flexible model for the data. Similar to the CV method, the 

optimization process with GCV involves testing various 

combinations of bandwidth, but with a calculation formula that gives 

different weights and avoids validity issues in some kernel functions. 

The steps to determine the best model using the GCV method are 

described as follows: 
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1. Determining Optimal Bandwidth 

The determination of the optimal bandwidth is done through the 

kernel regression modeling process with the determination of 

bandwidth as in Table III and the kernel triangle function so that the 

smallest GCV value is obtained. Table V shows the combination that 

produces the smallest GCV value. Based on Table V, the optimal 

bandwidth value obtained from the GCV optimization method is 1.1 

on the 𝑋1 variable and 1.5 on the 𝑋2 variable with a minimum GCV 

value of 4.1835. 

Fig. 6 shows a graph of the tested bandwidth combinations 

using the GCV method. Unlike the previous CV method, this graph 

contains all tested bandwidth combinations as in Table III. From the 

test results, it was obtained that the minimum GCV value was in the 

17th combination which was marked with a red dot on the graph. 

The kernel regression model formed can be written as follows: 

�̂�(𝒙) =
∑ {1−|

𝑥1−𝑋𝑖1
1,1
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2. Model Feasibility Test 

Through the previously formed model, the estimated value can be 

calculated using the actual data of the response variable. The 

estimated value will be assessed for its feasibility using the 

coefficient of determination by calculating the estimated value from 

the actual value of the response variable. The graph between the 

actual data and the estimated data is shown in Fig. 7. 

The model formed has a coefficient of determination of 

86.32% (very good). This means that the predictor variables of 

average length of schooling and expected length of schooling have 

an influence of 86.32% on the IPM response variable, while the 

remaining 13.68% is influenced by other variables not tested in the 

study. 

3. Model Performance Evaluation 

Next, the best model that has been formed using the GCV method 

will be assessed for its performance evaluation based on the MAPE 

measure. The MAPE value obtained is 1.94%. This means that the 

model created has very good performance in forecasting. 

 
Fig. 6. Plot of Bandwidth and GCV 

 
Fig. 7. Estimation Curve and Actual Data with GCV Optimization 

Table III. Tested bandwidth 

Variable Minimum bandwidth value Maximum bandwidth value Bandwidth increase 

𝑋1 1 2 0,1 

𝑋2 1 2 0,1 
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Table IV: Ten Bandwidth Combinations with the Smallest CV Values 

Combination 𝒉𝟏 𝒉𝟐 CV 

18 1.1 1.6 8.7675 

19 1.1 1.7 8.9918 

20 1.1 1.8 9.0599 

21 1.1 1.9 9.1037 

22 1.2 2 9.2048 

32 1.1 1.9 9.3668 

31 1.1 1.8 9.4154 

33 1.2 2 9.4155 

30 1.1 1.7 9.5093 

29 1.1 1.6 9.5988 

CV: Cross-Validation 

Table V: Ten Bandwidth Combinations with the Smallest GCV Values 

Combination 𝒉𝟏 𝒉𝟐 GCV 

17 1.1 1.5 4.1835 

16 1.1 1.4 4.1844 

28 1.2 1.5 4.1910 

27 1.2 1.4 4.1923 

18 1.1 1.6 4.2047 

15 1.1 1.3 4.2092 

5 1 1.4 4.2098 

6 1 1.5 4.2122 

29 1.2 1.6 4.2157 

26 1.2 1.3 4.2167 

GCV: Generalized Cross-Validation 

Determination of the Best Model Based on CV and GCV 

Fig. 8 shows the plot of actual data and estimated data of the 

response variable using the CV and GCV methods. Figure 8 shows 

that the actual data curve and the estimated results using different 

optimization methods, CV and GCV, have almost the same pattern 

and overlap. However, between the two methods, the GCV method 

is closer to the actual data. In determining the best method in 

estimating the HDI value, it can be done by comparing the 

coefficient of determination and MAPE produced between the two. 

The calculation results of the coefficient of determination and 

MAPE values from the CV and GCV methods are shown in Table 

VI. 

Table VI shows the determination coefficient value of GCV 

which is 86.32% greater than the CV value which is 85.92%, so the 

GCV method is better than the CV method even though in reality the 

determination coefficient value of CV is more than 67%. Therefore, 

a better method to use to estimate the HDI value in Indonesia in 2023 

is the GCV method. 

 
Fig. 8. Plot of Actual Data Estimation using CV and GCV Methods 

Table VI. Comparison of Model Evaluations 

Method 𝑹𝟐 MAPE 

CV 85.92% 1.96% 

GCV 86.32% 1.94% 

CV: Cross-Validation; GCV: Generalized Cross-Validation 
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Conclusion 

Based on the analysis conducted, it can be concluded that the 

Generalized Cross-Validation (GCV) method outperforms the 

Cross-Validation (CV) method in estimating HDI based on 

education quality in Indonesia for 2023. The GCV method offers 

greater flexibility than CV because it addresses the limitations of the 

CV formula, which may produce invalid results in certain cases. 

The GCV method produces optimal bandwidth values of and 

with a coefficient of determination (R²) of 86.32%. This result 

indicates that the predictor variables, which are the mean years of 

schooling and the expected years of schooling, significantly explain 

the response variable, which is HDI. These findings confirm the 

robustness of the model. Furthermore, the MAPE of 1.94% indicates 

that the model achieves excellent forecasting accuracy. 
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