Abstract
This study aims to model the Human Development Index (HDI) in Indonesia based on education quality indicators using multivariable kernel regression, and to identify the optimal bandwidth selection method through Cross-Validation (CV) and Generalized Cross-Validation (GCV). Employing a quantitative modeling design, the research utilizes secondary data comprising educational and HDI indicators from 34 Indonesian provinces in 2023. The analysis applies multivariable kernel regression with a triangle kernel function, with mean years of schooling and expected years of schooling as predictor variables. Bandwidth optimization is performed using CV and GCV, and model performance is assessed through the coefficient of determination (R²) and Mean Absolute Percentage Error (MAPE). The results indicate that the GCV method yields a slightly better model, with R² of 86.32% and MAPE of 1.94%, compared to the CV method, which as an R² of 85.92% and MAPE of 1.96%. While both models show excellent forecasting accuracy, GCV demonstrates superior stability and predictive performance. These findings confirm that multivariable kernel regression, particularly when optimized with GCV, is an effective approach for modeling complex data patterns such as HDI based on educational indicators in Indonesia.
Downloads
References
- [1] Abdy, M. (2019). Tinjauan Singkat Tentang Regresi Parametrik dan Regresi non Parametrik. Saintifik, 5(1), 58–62. https://doi.org/10.31605/saintifik.v5i1.199
- [2] Lamusu, F., Machmud, T., & Resmawan, R. (2020). Estimator Nadaraya-Watson dengan Pendekatan Cross Validation dan Generalized Cross Validation untuk Mengestimasi Produksi Jagung. Indonesian Journal of Applied Statistics, 3(2), 93. https://doi.org/10.13057/ijas.v3i2.42125
- [3] Ogden, R. T. (1997). Essential Wavelets for Statistical Applications and Data Analysis (Vol. 16, Issue 1).
- [4] Hardle, W. (1994). Applied Nonparametric Regression. In Cambridge University Press (Vol. 156, Issue 1). https://doi.org/10.2307/2982873
- [5] Suparti, S., Santoso, R., Prahutama, A., & Devi, A. R. (2018). Regresi Nonparametrik. Wade Group.
- [6] Sadek, A. M., & Mohammed, L. A. (2024). Evaluation of the Performance of Kernel Non-parametric Regression and Ordinary Least Squares Regression. International Journal on Informatics Visualization, 8(3), 1352–1360. https://doi.org/10.62527/joiv.8.3.2430
- [7] Puspitasari, I., Suparti, & Wilandari, Y. (2012). Analisis Indeks Harga Saham Gabungan (IHSG) dengan Menggunakan Model Regresi Kernel. Jurnal Gaussian, 1(1), 93–102.
- [8] Astuti, D. A. D., Srinadi, I. G. A. M., & Susilawati, M. (2018). Pendekatan Regresi Nonparametrik Dengan Menggunakan Estimator Kernel Pada Data Kurs Rupiah Terhadap Dolar Amerika Serikat. E-Jurnal Matematika, 7(4), 305. https://doi.org/10.24843/mtk.2018.v07.i04.p218
- [9] Razak, R. A., Nur, I. M., & Arum, P. R. (2019). Penerapan Cross Validation (CV) dalam Pemilihan Bandwidth Optimal pada Pemodelan Regresi Nonparametrik Kernel (Studi Kasus: Gizi Buruk pada Balita Di Indonesia). Prosiding Mahasiswa Seminar Nasional Unimus, 2, 364–372.
- [10] Raghuvanshi, G., & Verma, D. P. (2024). Human Development Index: A Critical Review. International Journal for Multidisciplinary Research, 6(2), 1–15. https://doi.org/10.36948/ijfmr.2024.v06i02.18146
- [11] Badan Pusat Statistik. (2024). Indeks Pembangunan Manusia 2023 (Vol. 18). Badan Pusat Statistik.
- [12] Eubank, R. (1999). Nonparametric Regression and Spline Smoothing (Vol. 96, Issue 338).
- [13] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. In Statistics and Applied Probability (Vol. 60, Issue 3). https://doi.org/10.3311/PPme.8017
- [14] Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proceedings of the National Academy of Sciences, 42(1), 43–47. https://doi.org/10.1073/pnas.42.1.43
- [15] Parzen, E. (1962). On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics, 33(3), 1065–1076. https://doi.org/10.1214/aoms/1177704472
- [16] Machkouri, M. El. (2011). Asymptotic normality of the Parzen-Rosenblatt density estimator for strongly mixing random fields. Statistical Inference for Stochastic Processes, 14(1), 73–84. https://doi.org/10.1007/s11203-011-9052-4
- [17] García, E. (2023). Notes for Predictive Modeling. bookdown.org/egarpor/pm-uc3m.
- [18] Takezawa, K. (2006). Introduction To Nonparametric Regression. John Wiley & Sons, Inc.
- [19] Carmack, P. S., Spence, J. S., & Schucany, W. R. (2011). Generalized Correlated Cross-Validation (GCCV). In Generalized Correlated Cross-Validation (pp. 1–28).
- [20] Gujarati, D. N. (1972). Basic Econometrics. In The Economic Journal (Vol. 82, Issue 326). Gary Burke. https://doi.org/10.2307/2230043
- [21] Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. In G. A. Marcoulides (Ed.), Modern Methods for Business Research (Issue January 1998, pp. 295-336.).
- [22] Maricar, M. A. (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. Jurnal Sistem Dan Informatika, 13(2), 36-45.
- [23] Chang, P.-C., Wang, Y.-W., & Liu, C.-H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. ScienceDirect, 32(1), 86–96. https://doi.org/10.1016/j.eswa.2005.11.021
Similar Articles
- Vandana Parth, Somnath Mukherjee, Human Health Risk Evaluation of Dissolved Metals in Water Resources in and Around MSW Disposal Site in Kolkata , International Journal of Science and Engineering Invention: Vol. 2 No. 01 (2016)
- Janos Vincze, Gabriella Vincze Tiszay, The Nephrogenesis in the Human Organism , International Journal of Science and Engineering Invention: Vol. 6 No. 11 (2020)
- youssra benromdhane youssra, Empirical determinants of Fintech: A dynamic panel data analysis in the MENA zone , International Journal of Science and Engineering Invention: Vol. 5 No. 09 (2019)
- Marzieh Zarei, Mohammad Iman Mazloumi, Diagnosis and Treatment of Learning Problems with A Neuropsychological Approach , International Journal of Science and Engineering Invention: Vol. 10 No. 04 (2024)
- Nerusu Gayathri,, Dr Neela Victor Babu, Assessment of Hydrochemistry by Using Geo-Spatial Technology in Padmanabham Mandal, Visakhapatnam District, Andhra Pradesh-India , International Journal of Science and Engineering Invention: Vol. 10 No. 08 (2024)
- K. J. Awatefe, C. A. Idibie, E. Q. Umudi, Comparative Study on Polyvinyl and Polyamide (Polymers) Resins as Corrosion Resistance Coating on Low Carbon Steel , International Journal of Science and Engineering Invention: Vol. 4 No. 10 (2018)
- Ali Mubarak Al-Qahtani, Jebaraj S., Oil Demand Forecasting in Malaysia in Transportation Sector Using Artificial Neural Network , International Journal of Science and Engineering Invention: Vol. 5 No. 02 (2019)
- Almir Šestan, Dalila Ivanković, Aldina Kesić, Aida Crnkić, Nadira Ibrišimović Mehmedinović, Heavy Metals and Their Toxic Effect in the Water of the River Bregava, Bosnia and Herzegovina , International Journal of Science and Engineering Invention: Vol. 9 No. 12 (2023)
- Theresia Mueni Mutetei, Esther Waiganjo, Elegwa Mukulu, Impact of Shared Vision on Firm Performance of Mobile Telephone Service Providers in Kenya , International Journal of Science and Engineering Invention: Vol. 2 No. 04 (2016)
- Nawa Nawa, Banda Danny, Bwalya Anthorny, Manyika Kabuswa Davy, An assessment of factors influencing science teachers’ use of practical lessons in public secondary schools of Kabwe District - Zambia , International Journal of Science and Engineering Invention: Vol. 6 No. 06 (2020)
You may also start an advanced similarity search for this article.
Copyrights & License

This work is licensed under a Creative Commons Attribution 4.0 International License.